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Abstract:
It is conjecturedthat anon-Abeliangaugetheorybasedon thecolorSU(3) groupwill confinequarks.Various techniquesthat havebeenapplied

to this questionare reviewed.These include approximatemethods basedon strong coupling expansionsof Hamiltonian and Euclidian lattice
theories,instantonimprovementson perturbationtheory, andsolutionsof truncatedDyson—Schwingerequationsfor thegauge field propagator.
Formal results basedon electric-magneticduality argumentsand on the study of loop field theories are presented.Deconfinementat high
temperatures,the inclusionof light quarks,anda possiblereconciliationwith ahypotheticaldiscoveryof free quarksarediscussed.

1. Introduction

The conceptthat elementaryparticlesare composedof fundamentalobjectswith unusualcharges
called quarks datesback to 1964 [1.1,1.2]. From the outset it was assumedthat the quark was a
mathematicalconceptandthat free quarksdid not haveto exist.The observedhadronswere assigned
to multiplets of flavor SU(3) transformingas singlets, octets, or decimets.Quarks were assignedto
transformas the fundamental3 and3. Thiswas subsequentlyextendedto flavor SU(4) [1.3]and more
recentlyto flavor SU(6).

However,moreandmore, the structureof elementaryparticleswasbeingunderstoodon the basisof
this simple, evennaive, model [1.4].The subjectsto which the quarkmodel gavereasonableanswers
includedhadronmagneticmoments,crosssections,weak interactions,etc. It wasreasonableto assume
that hadronswere compositesof quarksthat had their own physicalreality. It wasnot unreasonableto
look for thesequarksas on mass-shellreal particles.

1.1. Freequark searches

In a review of recentfree quark searches[1.5], we learn that of ten new experiments,eight give
negativeresults.The latter indicatethat quarksarenot presentin ordinarymatterto partsin 1021. For
massesbetween 5 and 10 GeV they are not producedin high energycollisions, up to the highest
acceleratorenergiesavailable,to parts in 1011 [1.6]. The two experimentsyielding possiblepositive
signals [1.7] are either in contradiction with other similar experimentsor have certain internal
peculiarities.Even acceptingsomeof theseresultsas evidencefor free quarks,thesearestill extremely
rare. In the last sectionwe will, briefly, discusshow the theoriesfor permanentconfinementcould be
modified to accommodatesuchrarequarks.For thepresentwe will assumethat quarksarepermanently
confinedin hadrons.
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1.2. Needfor color

Severalseriousdiscrepanciesandinconsistencieswereevident in the naivequarkmodel.
(i) Aside from the nonexistenceof free quarks,only singlets,octetsanddecimetswereobserved.No

triplets or sextetsexistedas physical particles.
(ii) The phenomenologyof the low lying baryonsfavoredplacing the threequarksmaking up sucha

baryoninto atotally symmetricstate.This was a violation of the spin-statisticsconnection.
(iii) The simple quark modelpredictionof the value of the crosssection for e~—eannihilationinto

hadronswas off by a factor of about three.
(iv) Therewas no obviousway to introducethe stronginteractionsthemselvesinto the model.
Historically, it was the secondpoint that led to the conceptof color [1.8]; it did help solveall the

aboveproblems.Eachquark flavor comes in three“colors” transforminginto each otherunder the
color SU(3)group. The phenomenologicalpostulatethat encompassesconfinementanditem (i) above,
is that only color singlets exist asphysicalstates.Threequarks in a color singlet are totally antisym-
metric,solving problem(ii), andthe factorof threein the e’—e annihilationinto hadronsis takencare
of by the threecolors. The color quantumnumber provides a current which can couple to strong
interactions.The flavor quantumnumbersare more natural for the weak and electromagneticinter-
actions.

With the introductionof color, the conceptof quark confinementtakeson a preciseform. It states
that only color singletsbelongto the physical Hilbert space.All nonsingletshaveinfinite energy.

1.3. Quantumchrodynamics

The ideathat the stronginteractionsmay bedescribedby anon-Abeliangaugetheory [1.9,1.10] was
given a sharp impetus by the observation that strong interactions are asymptotically free [1.11].
Bjorken scaling[1.12]andmoregenerallythe partonmodel [1.13],hadto assumethat for high energy
inclusivereactionstheconstituentsof the hadronbehavedessentiallyas noninteractingparticlesandthe
discovery of asymptotic freedom provided a theoretical justification for these assumptions.The
weaknessof quark interactions at high energieshas been successfullyexploited in perturbative
calculations[1.14].After noting the decreaseof the couplingconstantat highenergies,the idea that the
interactionstrengthwill increaseat low energiesor largedistances,was put forward. It is hopedthat
interactionswill then becomesufficiently strongto confinequarkspermanently.

1.4. Outline

This article will introducevariousapproachesandattemptsto showthat a non-Abelian,Yang—Mills
gaugetheory basedon color SU(3)confinesstaticquarks.The latter restrictsthe discussionto a pure
gaugetheory with no dynamicalquarks, i.e. no quark pair productionout of the vacuum. Quarks
appearonly as externalsources.In the last sectionwe will briefly discusshow such dynamicalquarks
modify the argumentsfor confinement.We limit our discussionto four dimensions.This review will
concentrateprimarily on work done after 1977. For earlier attempts,seethe reviewby Marcianoand
Pagels[1.15].One furtherapproachwe will not discussis the 1/Ne expansion.This approximationhas
giveninsight into someof the phenomenologyof hadronphysics,aswell asilluminating somedifficulties
in connectionwith apparentlyconservedcurrents;it has not, as yet, shed light on the question of
confinementin four dimensions.

The approachesthat will bediscussedare:
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(i) Lattice gauge theory, renormalizationgroup applicationsto it, and numericalresults(sections
3-5).

(ii) Improvementson perturbationtheory basedon the inclusionof instantonsandon the application
of Schwinger—Dysonequations(section6).

(iii) Electric-magneticduality (section7).
(iv) Loop field theories(section8).

Due to its own interest, and as it focuseson the important featuresof quark confinement, the
deconfinementof quarksat high temperaturesis discussedin section9. The inclusionof dynamicallight
quarksis briefly presentedin section 10, as is somespeculationon how manyof the confinementideas
can survivea discoveryof real quarks.Section2 is devotedto a short reviewof gaugetheories.Several
technicalpointsand calculationsaregiven in the appendices.Thesearemostly “well known” and are
given for purposesof completeness.

2. QuantumChromodynamics(QCD)

We assumethat the stronginteractionsof quarksaremediatedby a non-Abeliangaugetheory based
on a local SU(3)group. We will refer to this theory asQCD andto the vectorfieldson which this theory
is basedas gluons.This sectionservesas a reviewof the continuum,both quantumandclassical,theory.
As confinementis very strongly linked to gaugeinvariance,we discussthe interestinggaugeinvariant
operators,andin section2.4 presentsomephysical andmathematicalcriteriafor confinement.

2.1. ClassicalcontinuumQCD

We shallstudy a theory of a static triplet of quarks,describedby fieldsqa(x),a = 1, 2, 3 andan octet
of gaugevectorgluonsdescribedby the field A’s,j = 1,. . - ,8. It is convenientto combinethisoctetinto
a3x3 matrix

A~(x)=

wherethe matricesA/2 generatethe algebraof SU(3) [2.1],

r1~~~~j1_ ~.gijk1
5k

[2”,2’~ J
11 21~

We definethe covariantderivativeof the quark fields andthe field strengthtensorby:

D~q**= a
1~qa— igA~q’~D~’~= 8~4**+ ig4~A~ (2.1)

= ~ — 3~.A5.— ig[A~,Ar].

Theclassicaltheory,whosequantumversionwe hopewill result in confinement,is describedby the

Lagrangian

L[A, 4, q] = —~TrF~.F~’+ i4y°Doq— m04q. (2.2)
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The static nature of the quarksis insured by the absenceof spacialderivativesacting on the quark
fields. This Lagrangianis invariant underthe local SU(3)gaugetransformationdescribedby the 3 x 3
matrix

S(x)= exp[iw’(x)A~/2]

q(x)—~S1(x)q(x) (2.3)

—1 1 —1

A,.~(x)-+SA~S+—S3,~S.

In muchof what we shall do wewill needthe Hamiltoniancorrespondingto the aboveLagrangian.
Due to the gauge invariance,not all the variablesA,. are independent,and we may avoid this
redundancyby a properchoiceof gauge.The mostconvenientwill be the A

0 = 0 gauge.With

E~=o0A7, E1=~A~E~

B1 = ~El~kFjk, (2.4)

the Hamiltonianis

H J d
3x {Tr[E2 + B2] + m

04q}. (2.5)

As the A0 = 0 gaugeis not a completelyproper gauge,it must be supplementedwith the auxiliary
conditioncorrespondingto Gauss’law

D E V E — ig[A1, E1] = —gq
4 ~— q ~-. (2.6)

2.2. QuantizationofcontinuumQCD

The most straightforwardmethod of quantizing a classicaltheory.is to identify the independent
variables and their conjugatemomentaand impose canonical commutation (or anticommutation)
relations.One then searchesfor eigenstatesof the relevant Hamiltonian. In the presentcase,the
operatorsand their conjugatemomentaareA~(x)andE~(y)for the gaugefields andqa(x), q~(y)for
the spinors:

[E~(y),A~(x)]= —i5
0 8~8(x — y) ( 7)

{q~(x),q$(y)}= 6’~6(x —y).

Gauss’law, eq. (2.6) is satisfiedby requiringthephysicalstatesto form asectorof Hilbert spaceobeying

(D E + gq~q)~physical)= 0. (2.8)

The operator(D . E + gq’
4’q) is the generatorof infinitesimal gaugetransformations.Equation (2.8)

guaranteesthat the physicalstatesaregaugeinvariant.
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An equivalent way of quantizing a theory is through the Feynmanfunctional integral method
[2.2,2.3]. This method yields directly the vacuum expectationvalues of time ordered productsof
operators:

(T(O1(x1).- On(X~))) = [dA d4 dq] 5[A~]O1(x1) . . O~(x~)exp{if d
4xL[A, 4,

(2.9)
z = J[ciA d4 dq] o[Ag] exp{i J d4xL[A, 4, q]J.

LEA,4~q] is the Lagrangian(2.2) treatedas a classicalfunctionalof the commutingvariablesA,., and
the anticommutingvariables4 andq. [dA d4 dq] denotesthe functionalintegration.

In view of furtherdevelopments,it is usefulto transformthe functionalintegralsfrom Minkowski to
Euclidian space; we continue from real time t to it. In this languagewe evaluate the analytic
continuationof the vacuumexpectationdiscussedabove.

(O
1(x1)~. O,,(x,,))= [dA d4 dq] ô[A~] Oi(x1)~ O,,(x,,)exp{_f d

4xL~[A,4, q]~

Z=f[dA dq dq] o[Ag] exp{_f d4xLE[A, ~, q~}. (2.10)

In the above,all the geometryis to be treatedas Euclidian,andthe EuclidianLagrangianis given by

LE = ~Tr~ + i4yoD
0q — imo4q.

2.3. Gaugeinvariantoperators

In the following we will attempt to build all our observablesout of gaugeinvariant, not merely
covariant,operators.Neitherq(x), A,.(x) or evenF,.~,,satisfiesthiscriterion.q~qandTrF

2 do, but they
form too restrictivea class.A much largerclass can be built up with the help of the string operator
(terminology to becomeclearfurtheron)

y

U~(y,x;c)=[Pcexp[igJA(z).dzJ}’~. (2.11)

The symbolP~indicatesthat the exponentialis to be path orderedalong the curvec. Namely, let us
divide the curvec into N segmentsboundedby z

1 and z1±1,with z0= y andzN = x. Then

y

expig JA . dzJ= urn [11expig(zt÷i— z1) A(zi)J.

Note that the definition of U is the same in Minkowski and Euclidian space. Under gaugetrans-

formations

U(y, x; c)—~S~(y)U(y, x; c)S(x).



212 M. Bander, Theoriesof quark confinement

Among the mostusefulgaugeinvariant operatorswill be the following two,

M(y,x;c)= 4B(y) U~(y,x;c)q**(x) 212)

W(c)=trU(x,x;c). (

W(c)dependsonly on thecurve c andnot on the point x.
The operatorM has an interpretation as a mesoncreation operator.A part of a mesonwave

functionshould contain a quark at the point y andan antiquarkat the point x. Such a statemaybe
createdby the operatorq~(y)qa(x) actingon the vacuum.This stateis, however,not gaugeinvariant.
We mayremedythis by introducinga stringof gaugefields betweenx andy. Sucha stateis obtainedby
letting the operatorM(y, x; c) acton the vacuum.Of course,a true mesonwavefunction will consistof
(aside from multi-quark configurations, in the case of light quarks) a superpositionof quark and
antiquarkpositionsand,always, an evenmorecomplicatedsuperpositionof stringsjoining them.

2.4. Confinementcriteria

Theobviousquestionto askwith respectto confinementis, whatis theenergyof a statewith a quark
at x = 0 andan antiquark at x = R. Such a statewill obey Gauss’ law, eq. (2.8), or, equivalently, it
shouldbe gaugeinvariant.Basedon the discussionabovethis statewill be of the form

Iq(0), 4(R))= ~ i/i[c] M(0, R; c)I0). (2.13)

M(0,R; c) is the mesoncreation operatorof eq. (2.12), and the summationover curvesc is only a
symbolicway of indicating asuperposition,with amplitudes*[c] of stateswith different curves.Let the
energyof the lowest lying configurationbeE(R).

If thereis no confinement,we expectfor largeR

E(R)-+2m,

where m is the renormalizedquark mass.Confinementimplies that the interquark potentialgrows
withoutbound.Although any growth consistentwith E(R)_*ceyields confinement,we will illustrate this
behavior,againanticipatingfuture developments,with a linear growth.

E(R) R-.~ -‘oR. (2.14)

u is a universaltension,which can be determinedfrom heavyquark spectroscopy[2.4],

cr = 0.2 (GeV)
2. (2.15)

If we could establishthe behaviorimplied by eq. (2.14), wewould prove confinement.if will often be
referredto asthe string tension.The terminologywill becomeclearsubsequently.

Can we translatethe previouslydescribedbehaviorsof E(R) into propertiesof vacuumexpectation
valuesof someoperators?Thiswould prove usefulin a pathintegralstudyof confinement.The overlap
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of two mesonicstatesat differentEuclidian times is

M(T,R)= (.M’[(O, 0), (0,R); c] M~[(T,0), (T, R); c]). (2.16)

For c we takethe straight line from 0 to R. Placing a completeset of intermediatestatesbetweenthe
operators,and rememberingthat we areworking in Euclidianspace,we find

M(T, R)= ~ (OIM[(0, 0), (0,R),c]ln)12exp(—E~T).

The smallestE~correspondsto the energyof separationof a quark andanantiquark,i.e., the E(R) of
the previousparagraph.For largeT the behaviorof M(T,R) is

M(T, R)—’ e’E~~. (2.17)

We shall now study M(T, R)directly:

M(T, R)= (4(0, 0) U((0, 0), (0, R); c) q(0,R) 4(T,R) U((T, R), (T, 0); c) q(T, 0)). (2.18)

The staticquark fields satisfy the equationof motion (Euclidian)

iy°(
19o— igA0)q= im0q.

Although in the A0 = 0 gaugethis is afree field equation,we can solve it in thepresenceof A0 andas a

resultobtaina gaugeindependentconfinementcriterion. The quarkpropagatoris

(q~*(t, x) 4$ ~‘, x)) = P exp{if dt” A0(t”, x)~(q”(t, x) 4$ (t’, X))tree

-~ exp(—mo~t— t’I) U((t, x), (t’, x), c’) 8~ (2.19)

wherec’ is the line parallelto the t axis andstretchingfrom x’ to x. Combiningeq. (2.18)with eq. (2.19)
we obtain

M(T,R) — exp(—2m0T)W[c].

W[c] is as definedin eq. (2.12),and the curve c is the rectangledepictedin fig. 2.1. Comparingthis to
eq. (2.18) we obtain

W[c] -~ exp{— T[E(R) + 2mo]}.

If confinementholds,andthe form of E(R)discussedin eq. (2.14) is valid, we find

WEd —~~ —V e~~AM, (2.20)
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(T,O) (TR)

J
(0,0) (O,R)

R

Fig. 2.1. The directedrectangularcurvecusedto determinethepotentialof a quark—antiquarkpair separateda distanceR apart.

where A[c] is the area of the rectangleboundedby c. We note that the referenceto quarkshas
disappearedfrom the condition on W[c]. Thereforewe maydefine a confinementcriterion for a pure
gaugefield. Generalizingeq. (2.20) to an arbitrarily largecurvec, not just a rectangle,we saythat the
theory confinesif

WEd -~ ~ (2.21)

whereA[cl is the minimalareaof somesurfaceboundedby c [2.5].If the theory doesnot confine,then
the expectedbehaviorof W is

W[c] — ~ (2.22)

whereP[c} is the perimeterof c. Eq. (2.21) is the Wilson criterion [2.5]for confinement.
A physicalpictureof confinementis obtainedby a studyof thewaysgaugeinvariance(Gauss’ law) is

implemented.For a quark—antiquarkpair separateda distanceR, Gauss’ law requiresa color electric
flux betweenthem.The questionis to what extentdoesthis flux spreadin the transversedirection. In
AbelianQED thisspreadis of the orderof the separationleadingto an electricfield, E, of the orderof
hR2andan energyin the field

~JE2d3r~~.~hR

yielding the usual Coulomb law. If the transversespreadcan be fixed to be independentof the
separation,the electric field will be constantandthe energyof separationwill be proportionalto that
separation,consistentwith the previouspicturesof confinement[2.6].Squeezingcolor electric flux into
tubesof fixed thickness(thick strings) is anotherway of insuring confinement.

3. Lattice gaugetheories

A major impetusfor the hopethat gaugetheorieswill yield confinementis thestudyof thesetheories
in the strongcoupling limit [2.5].Resultsin this regimehavebeenobtainedin a lattice formulationof
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such field theories.In field theoriesa couplingconstantdependson a length scale; thus, in order to
distinguishstrongfrom weak coupling we must introducean intrinsic length into the theory.A lattice
providesus with such a scale.We will first presentHamiltonian spatial lattice formulationand then a
four dimensionalLagrangianlattice formalism.

3.1. Hamiltonian latticeformulation

As mentionedpreviously, oneof the reasonsfor introducinga lattice is to enablea strong coupling
expansion.With this in mind, it is useful first to rescalethe variablesso as to removethe coupling
constant,g, from eqs. (2.1), (2.3) and (2.6); of courseit is boundto reappearelsewhere.Let

A~(x)= gA~(x), E~(x)= ~E~(x).

The new variable continuesto satisfy the usualcommutationrelations.Someof the otherrelationsare
changedto

1 — —

= — (ö,.A~— 8~.A,.— i[A,., Au])

A,. -~ StA,.S+ iS’3,.S (3.1)

VE—i[A
1,E1]=—q~q

andmost important

H= TrJd3x {[g2E2+-~~A2]+ mo4qJ (3.2)

with

Bk = 2geIIkF1J. (3.3)

Naively onecould attempta strongcouplingexpansionbasedon the Hamiltonian(3.2). For large g
we might ignore the magnetic term and look for eigenstatesof the electric field. However, nothing
preventsB

2 from becomingvery large, or E2 very small. This is the reasonwe must turn to the lattice.
We discretizespaceinto a simple cubic lattice with latticespacinga. The latticesites arevectorsof

the form

I = a(iê~+jê~+ kê~).

i, j, k areintegersandthe ê, areunit vectorsalong the latticedirections.The links joining latticesites
will play an importantrole; the directed link from x to x + aê will be denotedby (x, e). We distinguishit
from the oppositelydirectedlink (x + aê, —e).

Introducing a lattice forces us to give up various space symmetries.We shall, however, try to
maintain gaugeinvariance.We wish the theory to beinvariant underthe discretegeneralizationof the
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quark field transformationlaw, eq. (2.3). It is naturalto associatethe vectorgaugefields with the links.
In a lattice,geometryscalarsareassociatedwith latticesites,vectorswith directedlinks, antisymmetric
tensorswith orientedareas,etc. Our basicunit will be the string operator(2.11) [2.5,3.1]

x ±a~

U~= U(x + aê,x; c) = P exp~[J A . dz]. (3.4)

The integralrunsalongthe link from x to x + aê. An obviousproperty, dueto the unitarity of U is

= Ux±ai;_e.

The continuumlimit is achievedby letting a tend to zero, andthen,at leaston the classicallevel

Ux:ê exp{iaA(x). e} 1 + iaA(x)’ ê. (3.5)

We shall use this limit to justify the lattice versionsof variousoperators.
U is a unitary 3 X 3 matrix andthuscan beparametrizedas any elementof SU3, namely

= exp{i s—. ~ (3.6)

Comparingwith (3.5) we see that the group parametersb arerelatedto the vector potentialsA. It is
important to note that the b’s vary over a compactmanifold in distinction to the continuumA’s.
Integrationover the groupdenotedin the future by [dU] will, in reality, be an integrationover the b’s.
We arenow in a positionto definea gaugeinvariant operatorwhosecontinuumlimit will berelatedto
B of (3.3). Considerthe trace of a productof four link operators,U~,along a fundamentallattice
square,or plaquette[3.2],illustratedin fig. 3.1

Ux;êI.ê2 = ~ (3.7)

Using eq. (3.5) we combinethe factorsof U.~eandto order a
2 obtain

Tr U~

11~= ~ijk Tr exp[ia2.~ 4] ~qk Tr[l — ~a~(E ~)]. (3.8)

— x+y ~+(~+~)o —

-a x+e1a

Fig. 3.1. A fundamentalplaquette.
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When no ambiguityoccurswe replacethe combinationx; ~ ê1 by p andlet

= Uxêj,~.

In view of eq. (3.8) a latticeversionof

HM= Trfd3x~~~sB2(x)

is

HM=~-4-Tr[2-UP-Ufl. (3.9)

We now needa latticegeneralizationof the electricfield. The commutationrelationsof eq. (2.7) will
serveas a guide. With U~,1definedin eq. (3.4) we find

[Ea&). ~j, Ux;êj] = ö~,,ô~(y±)U(x + aê,y; c)~—U(y, x; c),

if y coincideswith anyof the pointsin the interval x, x + aê andzerootherwise.In the latticeformation
~ hasto be consideredin total andcannotbe brokenup along the link. We can define an electric
field at thestartor endof a link. Thetwo fields associatedwith thelink (x, e) areE~andE~±aê;ê,and
are determinedfrom their commutationrelationswith link variables~ For ê positive,we postulate
[3.1]

[E~e~, U5.~~]= Sil Sx,y U~~j

(3.10)
[E~±ae~_êi, Uy;êj} = ~

5ij ~5x,y~ ~

The fact that U~T;
1= Ux±ae;—j yields the commutationrelations for negative ê’s. Use of the Jacobi

identitiesyields the electricfield commutationrelations
1E’~

~ 1—~~-~ ~

[ ~i,, y;~

1J— I ~ x.yJ x;ê,

[E~_~1,E~_ej]= ~ ~ E~_~j (3.11)

~ ~ = 0.

The two electric fields arenot independentof eachother; the defining commutationrelationsprovide
the connection

—— ~$J’$ +
— x:~/x x;é x;J

which implies that

= E~±ae;_e. (3.12)
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The electricenergy

HE= g2TrJd3xE2 (3.13)

goes over to

HE = ~ (3.14)
a tin

The total latticeQCD Hamiltonianis

H = ~ ~j5~ (2— Up— U~)+~mo4~q~. (3.15)

The generatorof infinitesimal time independentgaugetransformationsis

~ (E~ — E~_e)+ q ~- q~}. (3.16)

We requirethis operatorto annihilateall physicalstates.
Before proceeding,it is usefulto study the spectrumof statesof a single link Hamiltoniant

Hxe =

Fornotationalsimplicity we write

E~~E~= E2

E~j= E~

E~ —

x±aê;—ê—
E2 is the quadraticCasimiroperator,C~’~[3.3],for a representationr of SU(3).The statescorrespond-
ing to a given r transformas an (r, r) representationof SU(3) x SU(3) generatedby the operatorsE’~
andE’~.We will usethe collectivelabelsp andp’. If d(r) is the dimensionalityof r, we aredealingwith
d2(r) states.Aside from E2 we may chooseE3, E8, E’3 andE’8 to bediagonal

E2~r;p,p’)=rC(2)(r)~r;p,p1)

E3’81r; p’ p’) = A3’8(p)Ir; p,p’)

E’3~8jr;p, Pr) = A38(p’)Ir; p’ p’).

‘Such a single link theory hasan interestingmechanicalinterpretation.Had we been dealingwith an SO(3) rather than an SU(3) theory, the
single link Hamiltonian would be the sameas the Hamiltonian for a symmetrictop with moment of inertia aIg2. The operatorsE~~generate
rotationsaroundspacefixed axesandthe~ aroundbody fixed axes.Thematrix U,~is therotationnecessaryto go from onesetto theother.
(See, for example,L.D. Landauand E.M. Lifshitz, QuantumMechanics(Addison-Wesley,Reading,MA, 1958).)Thus, we may view the lattice
gaugetheoryasa collectionof interactingrigid SU(3) tops.
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Another useful representationis one in which the operator Ux;i(b) (cf. eq. (3.6)) is diagonal.The
overlapbetweenthis andthe previousset is

(U(b)lr;p,p’)= D~,.(U). (3.17)

D~7~is the d(r) dimensionalrepresentationof SU(3)correspondingto the transformationgeneratedby
the b’~(cf. eq. (3.6)). Thedefining link variablesU correspondto ~

As an example,andfor future use, we will now calculate,in strongcoupling perturbation,the low
lying spectrumof states.

3.2. StrongcouplingHamiltonian perturbation

The Hamiltonianof eq. (3.15), in aform convenientfor strongcouplingexpansionis [3.4,3.5]

H = ~ Ex~+ x Tr ~ (2— U~— U)} + ~ mo4(x)q(x) (3.18)

x = 21g4.

In this sectionwe will calculate,to zeroth, first and secondorder in x, the quark—antiquarkpotential.
We will do thisin a standardHamiltonianperturbationtheory.However, aswe will be interestedin the
differencein theenergiesof this configurationandin the vacuumenergy,let uscalculatethe quarkless
spectrumfirst.

Due to Gauss’law, electric flux linesmust close.To zerothorder in x the two lowest lying statesare
the vacuum, with no electric flux anywhere,and the stateswhere the electric flux is in a 3 or 3
representationalong the links of somefundamentalplaquette.The first statewe identify by 10) with
energy~ = 0. The secondclassof statesconsistsof

IP)= U~JO)
i~)=U~0). (3.19)

Using the definition of U, eq. (3.7), andthe commutationrelations,eq. (3.10),we obtain

HElP) = E~,°~lP)

HElP) = E~~IP)

with

E~°~= ~ 14C3)l—

~° 2a ‘ 3 2a~ (3.20)

Normalizing the groupinvariant measureto [3.3]

f dUD~’~(b)D~~(b)= 4~’ôpp’

resultsin havingthe statesIP) properlynormalized.



220 M. Bander, Theoriesofquark confinement

To first orderin x all energiesshift by

E~O’~,= 3x ~— N(P). (3.21)

N(P) is the numberof plaquettesin our system;weassumefor the moment,afinite world. The orderx2
correctionis obtainedfrom secondorder perturbationtheory,

= — x~~ (0 ~ = ~ (~N(P))x2. (3.22)

Let usnowturn to stateswith aheavyquark at the origin anda heavyantiquarkat R = naê
1.Again,

dueto Gauss’law, we must havean electric flux joining the two particles.We expectthe lowestenergy
configurationto consistof the shortestflux path possible.This is illustrated in fig. 3.2(a). The lowest
orderenergyof this configurationis

Eoa(x)= ~—~n+2m0= ~-~R + 2m0. (3.23)

Comparingthe aboveequationwith (2.14) we obtainthe resultalludedto earlier:strong couplinglattice
gaugetheoriesconfinequarks.

To first order in x the perturbingHamiltonian connectsthe statedescribedby fig. 3.2(a)to those
representedby figs. 3.2(b)—(f). The relevantCasimiroperatorsare [3.3]

C
6) 10/3, C8~=3

3

_____ 3fl3I- I I i~

8

(a) (d)

_____ 3fl3I I I I I I I I

3
(b) Ce)

I I

Cc) (f)

Fig. 3.2. Hamiltonianstrongcoupling contributionsto the interquarkpotential. Numbersindicatetherepresentationto which a particularlink has
beenexcited.If no numberappearsthe3 representationis implied. Zeroth order(a); first order(b); secondorder(c—f).
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and

E°”= E0~+ ~ (162a ‘.3

EOC = E0a+ ~ (~2a ‘.3

Eod= E0a+ ~ (~22a 3

= Eo0+ i— (4)2a

E°t= E0~+ ~— (6).
2a

The first order shifts in the energiesof all the configurationsare againthe commonfactor of eq.
(3.21). The Clebsch—Gordoncoefficientsyield the matrix elementsbetweenconfiguration(a) and the
otherones.The contributionof theseconfigurationsto the secondorderenergyshiftsare

_E2b=~x2~[N(P)_4n]

2a 24

= i— x2 ~ [4n] (3.24)

= i— x2~ [4n]2a 9

—E2~=~

2a 12t
Thetermsin the bracketsindicatethe numberof configurationsof each type. Combiningtheseresults,
andsubtractingthe secondordercorrectionto the vacuum,eq. (3.22), weobtain [3.4,3.5]

E(R)=~R[~_x2~+.. .}+2m
0. (3.25)

Again we obtain a linearly rising potentialleading to a confinementof quarks.Higher order termswill
be presentedlater.

3.3. Euclidian latticegaugetheories

Lagrangiantheoriesin a path integral formalism can also be transcribedto a lattice, this time a
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four-dimensionalone[2.5,3.2]. In appendixA we showthat the lattice analogueof eq. (2.10) is

(ii O1(x1 e1)) = ~Jfl dU~fl O(x,; e1) exp{-~Tr~ (U~+ U)}

1 (3.26)
.7 = Jfl dUx.~exp{—~Tr~ (U,. + U)}.

The plaquettesummationnow runs over all four dimensions.The continuumlimit of the aboveis just
eq. (2.10); however,as discussedin appendixA, this formulation is equivalent to the Hamiltonian
formulationfor smallg only. We expectthe quantummechanicsbasedon the different formulationsto
be the samein the continuumlimit. However, variousapproximateresultswill beformalismdependent
andit is constructiveto comparethem.

The operatorcharacterizingthe confinementpropertiesof the theory is the Wilsonloop integral,eq.
(2.12), whoselattice analogueis

W[c]=Tr fl U~. (3.27)
(x.é)Ec

The productis orderedalongthe closedcurvec. For simplicity we will deal with planarcurvesonly.

3.4. Euclidian lattice strong couplingexpansion

The strong coupling expansionof the Euclidian theory [3.2, 3.4, 3.6] is obtainedmost directly by
expandingthe exponentin eq. (3.26) as a power seriesin 11g

2. The orthogonality propertiesof the
representationmatricesU showthat thelowestordernonvanishingcontributionto (W[c]) is of theorder
(1/g2)”~.N(c) is the numberof plaquettesin theplanarareasurroundedby thecurvec. The situationis
illustrated in fig. 3.3(a).Relatingthe numberof plaquettes,N(c), to the areaby A = N(c)a2,we obtain

W[c] = exp(—ln g2A/a2). (3.28)

1/ ////T~/ /

(0)

/// rr/

//////////////~
(b)

Fig. 3.3. Plaquettescontributingto theWilson loop in a strongcoupling Lagrangiantheory.Lowestorder(a); first ordercorrection(b).
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Comparingthis to (2.21) we see that again the strongcoupling limit results in confinementwith the
energyof separation

E(R) = ln g2R. (3.29)

The difference betweenthis result and that of eq. (3.23) is due to the aforementioneddifference
(discussedin greaterdetail in appendixA) betweenthe two formulations.

One could proceedandpick out the higher order termscontributing to W[c]. It is moreconvenient
to modify the expansionsomewhat[3.41.This modification is inspired by the treatmentof similar
problemsin statisticalmechanics.Noting that the representationsof a groupprovide a completeset of
functions[3.3],weexpand

exp~ [U~ + Ufl = 1(g2)~ wr(g2)Tr ~ (3.30)

with wi(g2) = 1. Inverting this expansionyields

1(g2)= f dU,. exp~ [LJ~,+ Ufl = 1 + O(11g2)

g (3.31)

w
3(g

2)= fdU,. TrD°’ exp~[U~ + ufl = ~+ O(1/g~).

(54(g2)start with a power(1/g2)~,where ii is the smallestnumberof 3’s and ~‘snecessaryto obtainthe
representationr. Thus an expansionin powersof hg2 maybe recastinto an expansionin powersof

= ~ The first contributioncomesfrom the r = 3 term in eq. (3.30) for eachplaquetteoutlined in
fig. 3.3(a)

W[c] = (~)A/a2 (3.32)

The factorsproportional to 1(g2) are cancelledby similar terms in the expansionof Z. The first
correction comes from surfaces depicted in fig. 3.3(b). There are four more plaquettesand the
contributionis (w)~”~2~~.ThereareA/a2 placeswherethis extrabox maybe attachedandfour waysof
arrangingit in the two extradimensions.

W[cl = WA/a2(1 ~ = exp{_4(_lnw —4~~+. .)} (3.33)

Again, to this orderwe haveconfinementwith the energyof separation

E(R) = —~ (—In w — 4w4+~ ~)R. (3.34)

Higher ordertermswill likewise be presentedlater.



224 M. Bander, Theoriesof quark confinement

Lattice theories,both in the Hamiltonianandin the Euclidian—Lagrangianformulationleadto quark
confinementat strongcouplings.The crucial questionto which we turn in section4 is how theseresults
extrapolateto the weakcoupling continuumregion.

3.5. Off axiscalculationsand stringfluctuations

The calculationsin sections3.3 and 3.4 were donefor the caseof the quark—antiquarkpair along a
lattice direction. If the lattice theory possessesa Lorentz invariant continuumlimit, then the results
shouldnot dependon thischoice.Thereis interestin doing thesecalculationswith the quarksnot along
alatticedirection.We shall discussthe detailedreasonsin section5 andpresentthe first orderresult for
the quark—antiquarkpair off axis, but still in a plane.Resultsfor the threedimensionalcaseare not as
yet available;for the ideaswe wish to illustrate, the planarcaseis sufficient.

The situationis illustratedin fig. 3.4. X andY are in unitsof the lattice spacing.In this figure we also
showseveralof the possibleshortestflux lines.Thereare, in total, (X+ Y)!/X!Y! such flux configura-
tions. The electricenergyassociatedwith any of theseis

E0=’~—~(X+Y). (3.35)

To calculatethe correctionsdueto the magnetictermwe mustusedegenerateperturbationtheory.The
perturbingHamiltonianconnectspathswhich differ by oneplaquette,such as thosemarked(a) and (b)
in fig. 3.4. The matrix elementof thisperturbationis

—a—~—~. (3.36)

The pathshaveN = X + Y links. Eachlink is eitherhorizontalto theright or vertical up. In order to
diagonalizethe perturbingHamiltonian,we makea correspondencebetweenthe paths and a gas of
fermionson N sites[3.7].If link j is horizontal,we saysitej is unoccupied;if link j is vertical thensitej
containsa fermion. Introducing fermion creationand annihilation operatorsa, a1~,we can write the
perturbingHamiltonianas

N-i

H1 = —a ~ [a~a1±,+ a~±1a1]. (3.37)

I ~

(b)
#~——~--.— Y

fbI (a)
-~ —

(a)

q —

x —.~
Fig. 3.4. Minimum flux pathsconnectingan off axisquark pair.The magneticterm in theHamiltonian connectspaths(a) and(b).
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The total numberof fermionsis Y. This Hamiltonianis easilydiagonalized.With the momentummodes
definedby

a(k)= ~ a~sin(kj)
N~1 (3.38)

knir/N; n=1,...,N—1

the Hamiltonianbecomes

H1 = —2a (cosk) a’(k) a(k). (3.39)

The groundstateconsistsof a Fermi seawith Y levelsfilled

E1 = —2a ~ cos(irm/N). (3.40)

In the limit of largeseparationthe energyof a quark—antiquarkpair is

E = ~— (X + Y){1 — ~— sinEYir/(X + Y)]~. (3.41)

We still havea confining potential,albeit angledependent.As mentionedearlier, we hope that the
angulardependencewill disappearwhen the calculation is takento all ordersand the continuumlimit
approached.

Our primary interestis not in the energy,but in the fluctuationsof the flux string.For the on axis
calculationsthis string did not deviatefrom the shortestpath by more than a few latticesteps.For the
off axis casewe find that alreadyto first order the fluctuationscan be as largeas the string itself. For
subsequentdiscussions,we will be interestedin the meansquaredeviationof the flux string from the
diagonalpath.This will be a measureof howmuch the stringflip-flops.

The distancea point on thestring deviatesfrom thisdiagonalis equalto the numberof fermionsto
the right of it minusthe numberto the left of it:

5(l) = ~ a’a1 — aa,,. (3.42)

In the ground state (5(1)) 0 but (8
2(l)) ~ 0. The evaluationof this quantity can be accomplishedby

introducingparticle-holecreationandannihilationoperators:

b~(k)=a(k); n�Y

a(k)=a(k); n>Y (3.43)

The annihilationoperatorbecomes

a
1 = ~ L~~1sin(2irnj/N)a(k)+ sin(2rrnj/N)b~(k)}. (3.44)
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Both the a and b operatorsannihilatethe groundstate.The evaluationof (52) is now straightforward.
We find that in the largeN limit, with YIN fixed,

(52)~~~~ln N. (3.45)

The importanceof thisresultwill bepresentedin section5. We find that the fluctuationsdivergeas the
separationincreases.If this were truefor the on axis situation,it would not becomeevident till at least
the In N orderof perturbationtheory.

What is the reasonfor theselargefluctuations?Considera quantizedstring under tension.It is an
elementaryexerciseto show that the transversefluctuationsnearthe centerof the string behaveas
(3,45)[3.8,3.91. This is truefor continuousstrings. Oneof the lessonswe havelearnedis that low order
perturbationcalculationsof an off axis quark configuration may be a better approximation to the
continuumthanon axis ones.Translatedto the languageof Wilson loops, theseresultsindicate that in
the continuumlimit, the important surfacesboundingthe Wilson loop will fluctuate more and more
from the minimal one as the size of the loop increases.This phenomenonhasan analoguein the
statisticalmechanicsof spin systems,where it is referredto as surfaceroughening[3.10].

4. Renormalizationgroup

It is tempting to be satisfiedwith the previousargumentsandconcludethat QCD confinesquarks,
perhapsonly for sufficiently largecouplingconstants.Two relatedpointsindicatethatwe mustdo more.
The strongcouplingexpansionon a lattice is very far from beingLorentz invariant.We must find away
to extendthe previousdiscussionsto suchan invariant a = 0 continuumlimit. Second,in this limit, the
theory should go over to a perturbativelyasymptoticallyfree SU(3) gaugetheory [1.11].High energy
phenomenologyfavors this version of QCD [1.h4].The standardperturbativelimit of QCDdoesnot
confine quarks, so we cannotcomparethe strong coupling lattice u (cf. eq. (2.14)) with a similar
perturbativeexpression.However, therearequantitieswhich exist in both limits and whoseproperties
determinethe answersto someof the points raised above. The renormalizationgroup is the most
convenientframeworkfor studyingthe connectionbetweenstrongandweakcoupling.

The basis of renormalizationgroup argumentsis the observation that, ultimately, the lattice
parametera is an artifact.No physicalquantitiesmaydependon a, especiallyin the continuumlimit of
smalla. This limit cannotbe takennaively aswe would loseany scalesettingparameter;all dimensional
quantitieswould be either zero or infinite. This is a commondifficulty of all field theorieswith no
important intrinsic mass parameters.The problem is cured by variousrenormalizationprescriptions.
Theseamountto taking somequantity that wehope hasphysicalsignificance,andkeepingit fixed aswe
let a approach zero. All otherphysicalresultsareexpressedin termsof thisquantity.Oneof the crucial
questionsis whetherthe quantity that we keepfixed exists for all values of otherparameters,as for
example,the couplingconstantg. If not, then the theory exists in differentphaseswith vastly differing
properties.For QCD to beboth asymptoticallyfree andconfining it must exist in a single phase.

4.1. Confinementphase

In the strongcouplinglimit of lattice theories(cf. sections3.2 and 3.3) the energyof separationof a
quark—antiquarkpair is proportionalto theseparationdistancewith a universaltensionif. Dimensional
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considerationslead us to the form

(4.1)

In the sections3.2 and3.3 the first two termsin the strongcouplingexpansionof f(g) werederived.The
dependenceof if on a must be artificial and it shouldbe possibleto rescalethe theory in such a way
that the explicit dependenceon a in (4.1) is compensatedby an implicit dependenceof g on a.
Differentiatingboth sideswith respectto a yields

0= a doida = —2if—/3(g)doidg

/3(g) = —a dg/da. (4.2)

/3(g)is the Gell-Mann—Low—Callan—Symanzik[4.1,4.2] function.It is thisfunctionthatis expectedto have
both a strong couplinganda weakcoupling limit. Rewriting (4.2), we obtain

/3(g)=_2if/~. (4.3)

A zeroof /3 implies a zeroof if (barringthe situationwheredif/dg = 0) and at such a point, for finite
g, if cannotbe held fixed to definethe continuumlimit of the theory.

The first two ordersin the strongcouplingHamiltonianand Lagrangiantheoriesyield [3.2,3.4, 3.5]

14411

—/3(g)/g = ~
1 —~-~—‘g~ (Hamiltonian)

= 2d(lng){ln w(1 — 16w4)+4w4}; (Lagrangian). (4.4)

4.2. Perturbativegluon phase

In standard Feynman perturbation theory there is no linear term in the energy of separation of two
quarks.We cannotcomparethe if’s directly. We must find someotherquantity to keepfixed as a and g
are varied. This yields a new /3(g) that we may try to compareto the one obtainedin the strong
couplinglimit. The usualrenormalizationprescriptionfixes the threepoint gluonfunction atsomevalue
M of theexternalgluon masses,to gR(M). One can then vary g and a keepinggR(M) fixed and obtain
a /3(g). This procedureis valid if gR(M) is, even if only in principle, a measurablequantity. If
confinementholds, then our experiencewith lattice theoriesindicates that the vacuumis a unique,
gaugeinvariant stateandgaugevariantexpectationvalues,as thethreepoint function will not exist. We
will choosea variant of this prescriptionby calculating, in perturbationtheory, the energyof a static
quark—antiquarkpair at a distanceR. The energy at some fixed distance R is measurable,whether
confinementholds or not, and can be the quantity held fixed. The first two terms in a perturbative
expansionof /3 are evaluated in appendixB andit is also shownthat thesetermsareindependentof
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renormalizationprescription:

13(g)/g= —130g
2—/3

1g
4

/3~,=hh/161T2 13i= 102/(16iT2)2. (4.5)

Wecan invert (4.2) combined with (4.5) to obtain

g2= {—/3o ln(A 2a2) + ln[ln(A 2a2)~]+.. .}‘~ (4.6)

A is a normalizing mass.Once we pick a processand a renormalizationprescription then such a
parametrization can be compared to experiment. Likewise, a knowledge of the finite parts of the
coupling constant renormalizations permits a comparison of calculationswith differentprescriptions.As
shown in appendix B, different prescriptionsamountto a differentchoiceof A.

The phenomenological value ofAto which we shall compareour calculationsis the onedefinedby
the modified minimal subtraction(MS) procedure[1.14,4.3]. Several analyses [4.4] determine

= (300—500)MeV. (4.7)

There is a possibility that higher twist operators[4.5], implying powerlaw correctionsto scalinglaws,
could lower this valueby up to a factor of two.

Canwe relatethesenumbersto anyotherones?If the theory continuesto confinedown to small g
then we may evaluate o. Integrating (4.3) with (4.5) as input we find

if = ~ (pog2)_$1I$lexp[_~.L~]. (4.8)

A2 is an, as yet undetermined, constant.Between(4.6) and(4.8) we can eliminateg and a andfind

VoAA. (4.9)

Both A and A are renormalizationschemedependent.We hope that the product is independent.
Numericaldeterminationsof A will be discussedin the next section.

4.3. Twoscenarios

As was discussedearlier, the continuumlimit is reachedby letting a approach zero and varying g,
while keepingsomephysicalquantity fixed. Fromthe definitionof /3(g),eq. (4.2), g will decreaseuntil it
reachesa zero with negativeslope of /3(g). Presumablythe theory will be Lorentz invariant at this
point. We notethat g = 0 is a zeroof /3(g). The question is whether, as we decrease g from largevalues,
we encounter other zeroes. Two such scenarios are shown in fig. 4.1. The solid lines indicate the known
weak coupling and strong coupling (both Lagrangian and Hamiltonian) results. The dashed-dotted line
showsa possibleconfinementsituation. The strong andweak coupling regionsarein the samephase.
The secondscenariocorrespondsto the dottedline in fig. 4.1. The strongcouplingscontinuumregion is
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Fig. 4.1. Two scenariosfor the QCD renormalizationgroup /3-function. The dashed curve refers to a nonconfining situation, while the
dashed.dottedcurveto a confining one.

given by somefinite value of g = g2, which hasnothing to do with the asymptoticfreedomregion of
g <g1. Likewise the large distance limit of the asymptoticallyfree theory correspondsto g = g1 while in
the strong coupling region g tendstowardslarge valuesfor increasinga. If the first interpretationis
valid we obtain confinement.

It is useful to restate these two scenariosdirectly in termsof the tensiono(g). If confinement holds
we expect if to exist down to small g where it is given by eq. (4.8). If confinement does not hold, if

will go to zero at g = g2 andceaseto exist for smallerg’s. At largeg it is given by the coefficient of R in
eqs. (3.25) or (3.34).

If we can extendthe calculationof if to small values of g and it matches(4.8) we will be able to
determine A and using (4.7) and (4.9) relate two known quantities.

4.4. Realspacerenormalizationprogram

The renormalizationgroup providesa schemefor directly computing the coupling constantas a
function of length scale. The advantages of this procedure are that it is not tied to a specific
renormalization prescription and in its approximateforms is less subject to numericaluncertainties
encountered in other schemes.The idea for this is basedon the block-spin renormalizationprogram
[4.6]used in statistical mechanics.

A group of lattice sites is blocked into a single site and new link variablesconnectingtheseenlarged
sites are introduced. The procedure is outlined in fig. 4.2. The new link variables are functions of the
original ones, the U’s. Formally this prescription may be expressed by a rewriting of eq. (3.26)

Z= f fldV1 fl dU1S[V, —f,[U]] ~ (4.10)

f,[U] is a function definingthe new link variables.Referring to fig. 4.2 this function depends on the old
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‘i*

~II~

Fig. 4.2. A blocking of lattice sitesandplaquettesinto a new lattice.Dark lines indicate new links joining new sitesmadeup of four old ones.

link variablesin its vicinity. After integratingoverthe U’s we areleft with alatticewith twice the lattice
spacingand2~the numberof link variables,

Z= ffldViexp{—Sesr[Vi]}. (4.11)

Sett is a new action in terms of the new variables. It will be more complicated in as much as it will
involve, in addition to the single plaquetteterms, tracesof loopssurroundingtwo plaquettes,in a plane
and out of the plane, etc. As far as the physics of large distances is concerned, Seit[V] andS[U] should
have the same form with only a different coupling constant g as the lattice spacing changes from a to
2a. In this manner we can map out g(a) andestablishwhetherthe strongandweak couplingregionsgo
smoothly into each other.

In practice [4.7],a choice off is difficult due to the requirement that V be a unitary matrix as U was.
Wewill mention explicit calculations in the next section.

5. Numerical results

Two approximation schemes have been used to study lattice gauge theories. One is an extension to
higher orders of the strong coupling expansion presented in section 3, both for the Hamiltonian and
Lagrangian theories. In the second scheme, the world is restricted to a rather small lattice (10~ lattice
pointsbeingthe largestconsideredtill now) and a MonteCarlo latticepathintegrationis performed.A
Monte Carlointegrationcan also be usedto performan approximatereal spacerenormalizationgroup
evolutionas describedin section4.4.

Unfortunately, due to computer limitations, many of these calculations have been for an SU(2) rather
than an SU(3) theory. Qualitatively, we expect the same results for both theories. The major analytic
differencesfor thesetwo theoriesare the analogsof (3.25) and(4.5). For SU(2)

E(R)=~~5R[~_x2+...]

22 1 — 136 1 (5.1)
= 316ir~’ ~ — 6 (16w2)2
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5.1. Strongcouplingexpansion

The strongcouplingexpansionwith low order termsgiven in eqs. (3.25)and (3.34) hasbeencarried
out to higher orders.We shall first discussthe Hamiltonian formulation. To sixth order [3.5] in x
(x = 21g2) the string tensionis

CT = ~~[1_0.054x2_0.028x3_ 0.0095x4+0.0032x5—0.0018x6]. (5.2)

Using (4.3) we find

—/3(g)= 1 — 0.22x2— 0.17x3— 0.041x4+ 0.025x5+ 0.023x6. (5.3)

This seriesis plottedin fig. 5.1.We notethat this seriesvery quickly takesthe strongcoupling limit into
the perturbativeregion,andto this order almostmatchesit. Above this weakcoupling—strongcoupling
crossover point thereis no hint of a zero in the /3 function and the confining scenarioof fig. 4.1 is
reproduced.Two observationsare in order.First, the strongcouplingandperturbativeapproximations
cometogetherin thesmallg region,whereeventhe secondordercorrectionto /3 is small. In thisregion
the perturbative/3 function is independentof theway thecouplingconstantis defined(seeappendixB).
The secondpoint is of greaterphysicalinterest.The transitionregionbetweenweakandstrongcoupling
extendsover a very small rangeof g, sayfor 1 <g < 1.5. Using (4.6), this translatesinto a narrowrange
of momentafor a runningcoupling constantg(q2). QCD changesvery rapidly from a low momentum,
strongcoupling,confining theory to a high momentum,perturbativeregime. Sucha trendis observedin
nature. Physicsbelow 2 GeV is dominatedby resonanceswhich, presumably,are due to the strong
interquark potential.Above 2 GeV the scaling[1.12],parton [1.131,perturbativeQCD region setsin;
thereis no largeenergybandwhereneitheror both descriptionsarenecessary.

Thestringtensionis plottedin fig. 5.2. The strongcouplingexpansiondoesbreakoff from the strong
limit and doesshowa tendencyto approachthe form suggestedby (4.8). To eachorder,however,the
curveratherthanmatchingit, is at besttangentto this prediction.Note, thereis no indication of a zero
of if. To eachorderwe can determinean A; from the third to the sixth, A rangesbetween300 and170.

1.0 -

0 8 - 6th order strong
coupling series

0.6 -

~ 0.4 - weak

0.2 - coupling

0.0 I
0.0 0.4 0.8 1.2 I.6 2.0

g
Fig. 5.1. Hamiltonianstrongcoupling /3.functionfor an SU(3)gaugetheory.(From ref. [3.5].)
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Extrapolationsto infinite orderyield

A=70±15. (5.4)

From(4.9) and(2.15) we can determineASL [cf. appendixB]

ASL= (6.4±1.3)MeV. (5.5)

With the aid of eqs. (B.21), (B.22) and (B.23) we find the corresponding[cf. Note addedin proof]

A~j~=(67±15)MeV. (5.6)

Thisvalue is considerablysmallerthanthe oneof eq. (4.7). However,we havenot includedquark fields
in our calculationsandtheseareexpectedto haveaprofoundeffect (seesection10.1),as is the inclusion
of higher twist operators[cf. discussionfollowing (4.7)]. It is compatiblewith MonteCarloresultsto be
discussed.

The strongcouplingEuclidianformulationhasbeencarriedout to twelfth orderin w [3.6].The first
two termswere given in (3.34),

—o-a2= ln w + 4w4+ 12w5— lOw6 — 36w7 + 195.5w8+ h13.1w~+498.2w’°— 2548w~+ 4184w12.
(5.7)

~ I 0 -

6th 0.1

00’’ I I ii I I
0.5 1.0 1.5 2.0

0.0 0.5 1.0 .5
2

Fig. 5.2. Hamiltonian strong coupling string tension for an SU(3)
theory.(From ref.[3.51.)Foreachorder,thestraight linesarebestfits Fig. 5.3. Lagrangian strong coupling string tension for an SU(3)
to eq. (4.8). theory.(From ref.[3.61.)The short-longdashedline is afit to eq. (4.8).
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The plot of this resultis shownin fig. 5.3 andthe inferredvalueof A is

A =55MeV, (5.8)

in agreementwith (5.6).2

The /3 function is similar to that of fig. 5.1.
Takenat facevaluetheseresultsindicatestronglythat QCD confines;severalcaveatsarein order.
(i) The obviousquestionis whetherthe orderof the expansionsare sufficiently largeto infer such a

result?
(ii) Is the discrepancybetweenA ~ calculatedin this scheme,and the phenomenologicalvalue,

curableby the inclusionof light quarks?
(iii) The curvesfor the string tensiondo not really showa straight line perturbativeregion.
(iv) There are questionsregarding the fluctuations of the string presentedin section 3.5 and

discussedfurther in section5.4.

5.2. Monte Carlo evaluationsof the string tension

Recently,approximateevaluationsof the lattice functionalintegrals,eq. (3.26),havebeenperformed
using Monte Carlo integration techniques[5.2, 5.3, 5.4]. A finite N4 lattice systemwith periodic
boundaryconditionsis setup. Practicallimitations of eventhe fastestcomputersrestrictN to berather
small.Mostreliableresultswereobtainedfor a theory basedon SU(2)ratherthanSU(3).Qualitatively,
weexpecttheoriesbasedon eitherof thesegroupsto behavein asimilarway. If oneconfines,soshould
the other. For SU(2), resultsareavailablefor up to a iO~lattice [5.3],while for SU(3)[5.4]6~was the
largest size, usedwith most resultsobtainedon a 44 lattice2’. We will not go into the details of this
method;it is suited for evaluatingaverages,asfor examplethe Wilson loop. The stringtension,if, may
be determinedin oneof two ways.Let W[I, J] be the valueof a Wilson ioop for a rectanglewith sides
of I andJ latticeseparations.Evaluatingthisfor severalI, J’s, we mayfit W[I, J] to

W[I, J] exp[—A + 2B(I + J)+ CIJ]. (5.9)

A fit to C yields

= C/a2. (5.10)

In the secondmethod,againbasedon (2.21),onedefines

xi.’ ——1 fW[I,J]W[I—1,J—1] 511E’ 1— n~(,W[IJ_1]W[J_1J] . ( .

For largeloopsX —~cra2. Resultswill be presentedusingboth techniques.Thelimitations of the lattice
size limit the loops to 5x5 for SU(2)and3 x 3 for SU(3).

Resultsfor SU(2) are shown in fig. 5.4. The strong coupling predictionsare followed out to about

2The two loop correctionsto the /3 function havenot been properly taken into account.
2’ Calculationson 16~latticesexist for large,discrete.non-Abeliansubgroupsof SU(2). (G. BhanotandC. Rebbi.CERN report TH2979(1980).)
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g2 = 2 wherethe tensiono~breaksandmatcheson to the form eq. (4.8). The slopeprovidesthe valueof
A

Asu(
2)= 77±12. (5.12)

As thisresultis for anSU(2) theory wehaveno physicalquantity to compareit to. We furthernotethat
the breakbetweenstringcouplingandweak couplingis fairly sharp.The transitionregion in g

2 is very
limited. This is reminiscentof resultsfound for SU(3) in the strongcouplingexpansioncase,andwill
serveas a guidefor SU(3)MonteCarlo calculations.

The resultsfor SU(3)arefar lessreliable thanthosefor SU(2).However,assumingthat the theories
basedon thesegroupsparallel eachother, we mayinfer interestingresultsfrom the SU(3)calculations
depictedin fig. 5.5:

Asu(
3)= 200 ±60. (5.13)

The resultsin appendixB permitus to evaluate

A~=(7O±20)MeV. (5.14)

This value is compatiblewith (5.6) and (5.8). Its significance,as well as the significanceof the sharp
break(more inferredfrom the SU(2) calculations,thanfrom the lessaccurateSU(3) one),wasdiscussed
in section5.1.

b ~ ~1 b -

0.1 ., 0.1-

I I _I I I I
0.00 0.25 0.50 0.75 0.0 0.5 1.0 1.5

hg
2 hg2

Fig. 5.4. MonteCarlo evaluationof the string tension for an SU(2) Fig. 5.5. MonteCarlo evaluationof the string tension for an SU(3)
theory. (From refs. [5.3, 5.4].) The lines are fits to the Lagrangian theory. (From ref. [5.4].)The lines are fits to the Lagrangianstrong
strongcoupling result andeq. (4.8). coupling result andeq. (4.8).
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Whatare the shortcomingsof this approach?
(i) Is evena 10~lattice, not to mention a 44 one, sufficient to infer the behaviorof the theory in the

largespace-timelimit?
(ii) Are the sizesof the Wilson loopslargeenoughto distinguishareafrom perimeterlaws?
(iii) Are thesecalculationssufficiently accurate,especiallywhen ~A is largeso that the valueof the

Wilson loop is small?The statisticalerrorsof the MonteCarlo calculationsshouldbe keptsmallerthan
the loopexpectationvalueitself.

(iv) Whatarethe effectsof uncontrolledfluctuationsof the surfacesspanningthe Wilson loop?This
questionis addressedin the nextsubsection.

A remark in support of thesecalculations(with a partial answerto the first two questions)is that
thereis a consistencyin that the relevantdistancesare smallover a largerangein coupling constants.
By relevantdistance,in lattice spacingswe understand(ua2)_t.This is the only distanceavailableand
plays the role of the correlation length in statisticalmechanicalproblems.Both for SU(2)and SU(3),
this distanceis of the order of one lattice separationat the transition from strong to weak coupling.
Thus,small lattices and small loops mayrevealthe large structure.It is unlikely that we can believe
thesecalculationswhen this length becomesof the order of the lattice size. For SU(2) this would
correspondto ~a2— 0.1 while for SU(3) to muchlargervaluesof this parameter.

An attemptto avoidsomeof the difficulties discussedaboveis to give up thecalculationof thestring
tension and perform a real spacerenormalizationgroup calculation as describedin section 4.4. The
resultsshould yield the coupling constantas a function of lengthscaledirectly. At present,the results
arevery preliminary [4.7].A blocking algorithmhasbeendevisedfor an SU(2) theory; it is not readily
extendibleto SU(3).

5.3. Stringfluctuations-roughening

We noted in section 3.5 that the flux string connectingquarks off a lattice direction fluctuates
strongly,evenin thelowestnontrivial order.The fluctuationsin the middle of the stringareof the order
of the logarithmof the interquarkseparation.For the situationwherethe quarksarelocatedon axis,
such phenomenawill not be seenin low ordersof perturbation.For quark separationR/a, we would
haveto go to an order ln(RIa) in x to see thiseffect. Doesthisimply somesort of singularbehaviorfor
the on axis string tension which would impede a smooth continuation between strong and weak
coupling regimes?We shall presentevidencethat thereis a changeoverfrom narrow flux strings to
rapidly fluctuating ones at a finite g~.This is similar to the rougheningtransitionsof the statistical
mechanicsof spin systemsand we borrow the languageand say that the string becomesrough [3.10].

The definition of the transversefluctuationsis not unique.For the Hamiltoniantheory aconvenient
procedureis the following [3.5,3.7]. Considerthequarksseparatedalongthez direction.A measureof
the transversefluctuationsis

ô = (E~r~)/(E~). (5.15)

E~measures the color electric field on links parallelto the unperturbedstring at a transversedistance
r~= x2+ y2. A strong coupling series for the dimensionlessquantity cr3 has been obtained [3.5].
Throughorder x91’2 the termsarepositive and the tendencyfor the seriesto divergecan be testedby
looking for poles in Padéapproximants.A consistentansweris obtainedfor the locationof a pole at
XR~1.8.
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A Euclidianversion of such calculationscan be set up [3.8].Considera large planarcurve c and a
plaquetteP parallel to the minimal surfacespanningc and a transversedistancex1 from it. We may
define

E — 1 (W[c] U[P]) — (W[c]) (UfP]) 5 16(x)_2 (IV[c]) ( . )

as the quantity to insert onto eq. (5.15) for 3. Using this definition, a string coupling series was
developedfor a theory basedon SU(2)andagainan indication of a rougheningtransitionwas foundin
the neighborhoodof the transitionpoint.

Anothercalculation[3.9] addressesitself to the questionof whethera given plaquettein theminimal
areaof a Wilson ioop is spannedby the importantsurfacescontributingto W[c]. This is accomplished
by reversingthe sign of the contributionof the selectedplaquetteto the action. Let

— (W[c] exp{—(2/g
2)Tr(U~+ U~)}) 517

Pw’ (WEd) (.

and

Po= (exp{—(2/g2)Tr(LT~+ U~)}). (5.18)

A rougheningtransitionoccurswhenPw = Po, i.e., whenthe surfacesspanningtheWilson loop fluctuate
so rapidly that it doesnot affect a specific plaquette.Again, calculationshavebeencarriedout for a
theory basedon SU(2)andthe resultsagreewith the above.

What are the consequencesof such a rougheningtransition?Some were discussedearlier,namely
that a strongcouplingexpansionfor the stringtensionmayrun into a block as it approachesthe weak
couplingregion. It is unlikely that the string tensionitself vanishesat that point. If the interpretationis
that this rougheningtransitionpredictsan onsetof unboundedfluctuations,thenthe resultsof section
3.5 indicate that a calculation with the quarks totally off axis (in all dimensions)may bypassthis
problem.Already in low ordersthe string is rough. The implicationsfor the Monte Carlo calculations
are unclear. Large fluctuationsof the surfacespanningthe Wilson ioops mayinvalidate finite lattice
resultsas thesefluctuationsmay see the walls of the lattice. If thesefluctuationsare only logarithmic
then they may be sufficiently soft that evenpresentresults are valid. Work should be forthcoming
elucidatingboth points.

6. Improvementson perturbationtheory

It is rather obviousthat standardperturbationtheory will not result in confinement.The quark—
antiquark potential is of the form

E(R)— _~i~.g2(R) (6.1)

with the zeroth and first order corrections to g2(R)given by eq. (B .4)
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g2(R)=g2[1+_i~2g2ln~+..J. (6.2)

Higher order correctionscontributehigher powersof logarithmsand no finite order will result in a
linear growth of the energy. It would be interestingto find improvementson perturbationtheory that
would yield confinement.First, it is an approachcomplementingthe strongcoupling one discussed
previously.Second,we would alwayswork with a continuum,Lorentzinvariant theory.Finally,because
of the previouspoint we could more readily developa phenomenology,especiallyoneinvolving light
quarks.

Two methodshave been used to study QCD in the small g region with a view of determining
whetherthis theorydoesor doesnot confine.The first methodinvolvesperturbingthe theory not only
aboutthe vacuumbuilt aroundtheA = 0 solution,but likewiseaboutnontrivial gaugetransformsof this
potential. In a Lagrangianlanguagethis amountsto performingfunctional integralsaroundinstantons
[6.1,6.2]. In thesecondmethodonesetsup anapproximateset of Dyson—Schwingerequationsandtriesto
solvethem at largedistances.

6.1. Instantoncontributionsto confinement

One way to view perturbationtheory on a Hamiltonian, such as that of (2.5), is to search for a
classicalminimumof the potential,the magnetictermin thiscase,andexpandthe Hamiltonianaround
this minimum. To lowest orderone hasthe familiar collection of harmonicoscillators. In the present
casetheobviousminimumis for the vectorpotentialA~= 0. The unperturbedHamiltonian is

H = ~f d
3x [:(E):2+ :(V x A)2:]. (6.3)

The groundstatewave functionalconsistsof Gaussianfluctuationsaroundthe minimum. Clearly, any
gaugetransformationof A~= 0 will likewise be a minimum.The requirementthat Gauss’law, eq. (2.8),
be obeyedby the statesof the theoryeliminatesmost of this redundancy;namely,we do not haveto
worry aboutminima which differ from A = 0 in finite regionsof space.Thereare, however,classesof
vectorpotentials,eventhoughgaugeequivalentto A = 0 differ from it at a sufficiently largedistance
that theyhaveto be takeninto accountseparately.Theform of thesepotentialsis discussedin appendix
C. These potentialsmay be labeledby a positive or negative integer v. The trivial A = 0 potential
belongsto the ii = 0 class.The Hamiltonianexpandedarounda potentialof the vth classis

Ht~~= d3x [:(E)2:+ :(V x A — ig[A~”~,A])2:]. (6.4)

Denoteby ri) theground stateof the harmonicoscillationsaroundthe rith minimum. Due to quantum
mechanicaltunnelingwhich connectsstatesbuilt aroundthe different minima,

= ~ ~) (6.5)

has a lower expectation value of the Hamiltonian and, therefore, is a better candidate for the ground
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stateof the full theory.To find the energycorrespondingto It/i), we evaluate,for largeT

e_FOT = _________= ~ (vje”~1i0). (6.6)

The overlapmatrix element(±1le~’i0)is proportionalto the exponentialof the action of a solution
connectingthe ri = ±1 class to the ri = 0 class, or looking at (C.8), to exp[—8ir2/g2]. The quantum
mechanicalzeropoint energyis very difficult to evaluate.The result is [6.3]

(±1Ie~TIO) = T I d3x~ D(p)

~ p 67
D(p) = C[So(g(p))]6 exp— [So(g(.p))1.

The power of p in the abovemaybe inferred from dimensionalarguments.S
0(g(,p)) is the instanton

action, eq. (C.8), correctedfor one loop renormalizationeffects.With the helpof (4.6) we mayrewrite
the action to thisorderas

So(g(,p))=—l1lnAp—~ln(lnAp). (6.8)

A and the constant C in (6.7) dependon the detailsof the renormalizationscheme.
Equation (6.7) may be viewed as a tunneling amplitude between two minima of a potential.

However,tunnelingcan occurin a morecomplicatedway by going back andforth, usinginstantonsand
anti-instantonsin such a way that we get betweenthe desiredminima in the interval T. We are
interestedin the action of a configurationof severalinstantonsand anti-instantons,and the Gaussian
fluctuationsaroundthem.Although the action of a configurationcorrespondingto only instantonsor
anti-instantonsis additive, the action involving both is more complicated. If the separationof an
instantonand anti-instantonis less than their sizes,p, then the differencein the actionfrom a sum is
significant and difficult to handle.We shall, for the moment,ignore this point and later outline the
region wherethis approximationis expectedto bevalid. We will alsomention an approximationtaking
into accountthe abovepoint.

With the abovein mind, the overlapon the right handside of (6.6) is takento be

(vJe~~
TJ0)= ~ ~ [Jd3x ~ D(p)J= -~ [2T Jd3x~ D(p)]. (6.9)

yielding

e~°T= exp[2T J d3x ~ D(p)]. (6.10)

We seethat the energydensityof the ground stateis loweredfrom the naive perturbativevalueby

—2f~D(p). (6.11)
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As mentionedearlier, this approximationpresupposesthat p <ix, whereL~xis some averageinstanton
anti-instantonseparation.To take this into considerationwe shall cut-off the p integration at some
critical Pc. ~c maybe estimatedby requiringthat theproductof ~�, the volume of an instanton, and the
Euclidian time duringwhich it acts,is lessthanone. The preciseassumptionmadein ref. [6.1]is

2 f ~D(p)~—p~<1. (6.12)

Irrespectiveof manyof thesomewhatuncontrollableassumptionsmadealongtheway, we do havea
bettercandidatefor the vacuumstatethanthe perturbativeone.Within the samespirit can we find the
energyof a static quark—antiquarkpair separatedby a distanceR? To answer the question,we first
considerthe instantonvariational calculation for the lowest energy in the presenceof a given static
externalgaugefield. Laterwe shalltakethe field to be theCoulombgaugefield dueto thestaticquarks.
The ideaof separatingfields into an instantonand an externalfield makessenseonly if the instanton
size is less than the distancesover which the externalfield varies. In this case,we may define the
instantonto be a solution of the classicalequationsof motion approachingthe externalfield at large
distances.In addition,if the externalfield is sufficiently weakthe total actionmaybeevaluatedwithout
too much difficulty. It consistsof the action of a pure instanton,eq. (C.8), the action of the external
field, ~T f d3x (FdI(t)2, and the interaction action.For an instantonlocatedat x this term will be of the
form

S
1~5(x)= ~F~’~(x) F~

t’~(x)~cir2p4 (6.13)

wherec is of the orderof unity. Detailedcalculations[6.1,6.2] give c = 2 and

S
1~5(x)= ~~~p2Raa ‘7a~wF~’~(x). (6.14)

An analogousexpression,holdsfor the anti-instantoninteractionwith the externalfield. It is easyto
seethat the analogueof (6.9) is

(vie ~iO) = ~ T” {[J d
3xdR D(,p) exp{S

1~t(x)}J

x[fd
3x dR D(p)exp{~~t(x)}]exp{— ~ fd3x (F~a)2}}

= —ii fTf d3x dR D(,p)[exp{S
1~,(x)}+ exp{1S~n,(x)}]~exp{_-~ f d

3x (PI~)2J. (6.15)

Thus,the energyof the lowest lying stateconsistentwith a given externalfield is

E = -2 f d3x~ D~)— f d3xdR D~)[exp{Sjn,(x)}+ exp{~~,(x)}-2] + ~Jd3x (F~t)2. (6.16)
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Thefirst term is the instantoncorrectionto the vacuumenergy,eq. (6.12); the last termis the energyof
the externalfield, while the middle term representsthe externalfield-instantoninteractions.We will
assumethat the externalfield is weak andexpandthe exponentialin the middle term to secondorder.
The first order term vanishesby the groupintegration.Using

J dRRaaRna =

(6.17)
7la5L~’fla’5~’V &~s~’3~’v~5s~,”&q~,

we obtain

E = Evac+ —i---- I d3x (F~t)2

4~J

(6.18)

Pc

= ~- J ~ D(p) S(g(p)).

An approximatetreatment[6.1,6.2] of the instantonanti-instantoninteractionsmodifies the relationof
/L toi

7

/Lfl+V1+?72. (6.19)

Equation(6.18) hasa resemblanceto the electrodynamicsof dielectricmedia.This correspondenceis
evenstrongerwhenwe notethe relation between~ and externalsources.In the casewhere~ is

purely electric, we find, by varying (6.18)with respectto A0

V ~ = p~S.cc~ (6.20)

In the casethat the externalsourceconsistsof a quark—antiquarkpair, the analogsof (6.1) and(6.2) are

E(R)=

with

g
2(R)= g2(R)j4g(p)] (6.21)

and~ given by (6.19); g(R) is the couplingconstantappropriateto the distanceR. From g(R) we can
obtain the renormalizationgroup function /3. Before we can compare/3 with otherresults, we must
discussone further restriction.The treatmentof the interactionof an instantonwith the externalfield
presupposedinstantonsizessmaller than the typical distanceover which the external field varied.
Though largerinstantonsmaycontributeto the vacuumenergy,it is plausiblethat theydo not seethe
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externalfield at all and do not effect (6.21). In ref. [6.11instantonsizes were integratedup p~with
~< pJR < 1. The otherlimit on ~c is (6.12) andthesetwo limits set an upper boundon the separation
for which this discussionis valid; this in turn putsan upper limit on g. In practice, the upper limit for
which wemaybelieveall thoseapproximationsis g <3. In fig. 6.1 we plot /3(g)/g [6.2] evaluatedfrom
(6.21) superimposedon the perturbative and strong coupling approximation.The instanton con-
tributions rapidly take the perturbativeresult towardsthe strong coupling region without any hint of
additional zeroes,indicating that the confining phaseand the perturbationphaseare the same.The
significanceof the sharpnessof the risewas discussedpreviously in section4~3

Following the strong coupling resultsln g2(a)/a2 should, for large a, approachthe string tension.
Results (with a correct relation amongthe various A ‘s) for a theory basedon the group SU(2) are
presentedin fig. 6.2[6.4].The relationbetweenthelattice cut-off andstringtensionis in agreementwith
strongcouplingandMonte Carlo results,eq. (5.12), in that Vo- 70 A E.L.~

We closethisdiscussionwith an intuitive pictureof how, in this approach,instantonsare responsible
for confinementandincludea critique of thistechnique.Equation(6.20) suggeststhat we definea color
displacementfield

Da(x)=

(6.22)
V . =

The energystoredin the color field is

E=~LfDaDad3x. (6.23)

As ~ becomeslarger due to instantoneffects, energyargumentswould like D to decrease.D is,
however,constrainedby Gauss’ law, eq. (6.22), tying it to the externalsources;the flux of D through
any surfacebetweena quark—antiquarkpair is proportionalto the quark color electric charge. The
configurationof minimumenergypicks a tubeof finite radiusconnectingthequarksandforcesmostof
the field into it; likewise it expels instantonsfrom the inside of the tube. Inside the tube ~a 1 and
outsideD -~0. The changein energy from that of the vacuum occursin a region whose volume is
proportionalto the interquarkseparationresultingin the normalconfining potential.We shall return to
this picture of flux tubeslater on. Evenif this approachis correct, the detailsand approximationsare
opento manyquestions.

1. Do otherconfigurationsbesidesinstantonsmakea contributionto confinement?
2. Have instanton anti-instanton interactions been properly accountedfor? Perhapsa correct

treatment of instanton—instantoninteractions causedby Gaussianfluctuations around the multi-
instantonsolutions[6.5] are as importantas configurationswith bothinstantonsandanti-instantons.

3. Is the treatmentof the size cut-off adequate?

6.2. Dyson—Schwingerequations

Earlier in this section we showed that confinementwould not obtain in any finite order of

The resultsfor the instantoncorrected/3 function may havesomeuncertaintiesastherelationsbetweenlattice andcontinuumA’s used in this
calculation is not correct (cf. appendixB). It is not expectedto havea largeeffect on /3 [6.4].
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Fig. 6.1. Instantoninterpolationbetweenweakandstrong coupling. Fig. 6.2. lnstantonevaluationof thestring tension. The dashed-dotted
(From ref. [6.2].) line is a continuationof the asymptoticfreedomresult. [D. Gross,

private communication.]

perturbationtheory.Perhapsan appropriatesummationof an infinite set of Feynmangraphscouldyield
confinement?The first questionwe ask is for what quantity we should set up thesediagrams.Ideally, it
would befor theenergyof two separatedquark sources.We first show that thisis approximatelyrelated
to the gluon propagator.It is well known that, in low ordersof perturbationtheory,an interparticle
potentialis relatedto thepropagatorof an exchangedparticle. We will establishthis result,andobtain
its limitations,for non-Abeliantheories.Thedifferencein energiesbetweena statewith a staticsource
densityp(x) coupledto a gaugefield andthe vacuumenergyof a puregaugefield is obtainedfrom

(Oiexp{—T(H+ gJd3xpa(i)A~(i))}IO)
Z[p, T] = (OIeTNIO) . (6.24)

For large T, thisyields

— In Z[p, T] = E[O] (6.25)

with E[p] the sought after energy. Another interpretation of (6.24) is that this expressionis the
generatingfunctionalfor vacuumexpectationvalues of productsof the operatorA

0 [2.2]. Specifically

In Z[p, T] = Jd
4x d4yp’~(x)~i~(x — y) p$(y)+ (termsinvolving higher powersof p). (6.26)

~ioo is the time—time componentof the full gaugefield propagator.Due to the higher powersof the
densityp appearingin (6.26), the energyof two separatedsourcescannotbe expressedpurely in terms
of an interparticlepotential (plus self energycontribution).It is only if we neglectthesetermsthat we



M Bander. Theoriesof quark confinement 243

obtainsuch a potential.4For a quarkandantiquarkseparatedby a distanceR, a combinationof (6.25)
and(6.26) yields

E(R) = f ~i~(R, t) dt. (6.27)

Going overto momentumspace

E(R) = (2)~fLIoo(k2)exp(—ikR) dk. (6.28)

The large distancebehaviorof the potential is determinedfrom the behaviorof the propagatornear
k = 0. A singularity of the form k~leadsto

E(R)~.~~Ra_3. (6.29)

For a = 2 we obtain the usual Coulomb behavior.A linear growth of the interquarkpotentialwould
comeabout from a k4 infrared behaviorof thepropagator.

We may also understandwhy such a singular behaviorwill lead to confinement,as well as the
limitationsof looking only at the propagator,by studyingthe behaviorof the Wilson loop expectation
value.(Recallthe discussionin section2.4.) Thismatrix elementcanbe expandedin termsof connected
n-point functionsof the gaugepotentials,

(Tr Pexp i ~CAdx) = Tr exp{_~ ~dx~’ dx’zI~(x — y)+. .}, (6.30)

wherethe dots indicatecontributionsfrom n-pointfunctionswith n >2. If wekeeponly the propagator
part, then the small k singular structure of LI (k2) determines the behavior of (6.30). For a = 2,

LI — 1/(x — y)2 and the double integral in (6.30) is proportionalto the circumferenceof the loop; for
a = 4, LI — ln lx — ~iandthis termis proportionalto the area.Within the limitations of keepingthe two
point function contributionto the energyor Wilson loop, we see that a determinationof the infrared
behaviorof the propagatordetermineswhetherthe theory confinesor not.

Clearly, perturbationtheorywill not changethe 1/k2behaviorto a 1/k4 one.Higher orders,at best,
increasethe smallk2 singularity structureby power log(k2). We shall addressourselvesto the question
of whethera selective,but infinite set of perturbationdiagramscould yield a 1/k4behavior.Thestarting
point will be the Dyson—Schwingerequationsfor the propagator.We shall discuss, in turn, two
approaches[6.6, 6.7] to solving theseequations.They yield similar results.The first one [6.6]will be
presentedin greaterdetail asit is moreinvolved. The axial gauge,~ . A = 0, is usedin ref. [6.6];in ref.
[6.7] a covariantone is used.The equationfor the “inverse” propagator(refer to appendixD for the
definition of the inverse propagatorand the reason for placing it in quotation marks) is shown
diagramaticallyin fig. 6.3. The algebraicform of thisequationis (asorderedin fig. 6.3)

= i(q2g~ — q~q~)+ ~f (dp)ir°~A.(q, —r, —p)LIA~(r)LI A’~’(p)iF~(q,r, p)

_g2f (dp) [g~LI~(,p)—LI~,(p)]+ (last two diagrams). (6.31)

4A similar problemis encounteredin appendixB.
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L~I
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+ +

Fig. 6.3. Full Dyson—Schwingerequationfor thegluon propagator.Shadedcirclesindicatefull propagatorsandfull vertices.

(dp) is shorthandfor 3d4p1(2ir)4.1°is the barethreepoint vertexandF is the full vertex.The last two
termsarenot written out in full as, undercertainsimplifying assumptions,theydo not contributeto the
resulting equations.

Equation(6.31) is not completeunlesswe specify the vertexF. The Ward identities (appendixD)
provide part of this vertex. They do not determinethe transversepart, namely the one that vanishes
when any index is contractedwith its momentum.Is the part of the vertex provided by the Ward
identities (the longitudinal part) sufficient for the determinationof the infrared structure of the
propagator?In similar calculationsin Abelian QED it is sufficient [6.8].This is due to the fact that as
far as the infrared on shell singularitiesare concerned,the longitudinalpart carriesall of these.For
example,the vertexof aspin 1/2 particle,hasa partproportionalto ‘y~,which is both determinedby the
Ward identity and hasall the infrared singularities; the other part of this vertex, namely the one
proportionalto ~ vanishesin the infrared limit. In QCD this hasbeendemonstratedonly to the
one loop level [6.9]. Additionally, in QED it is the singularpart of the vertexthat drivesthe singular
parts of the propagator.To pursuethis treatmentfor non-Abeliantheoriesthe sameassumptionsmust
be made.Are theseassumptionsvalid in QCD? QEDis a weak coupling theory in the infrared anda
strong couplingone in the ultraviolet; QCD, if it confines, is just the oppositeandsuch assumptions
maynot hold.

To proceedfurtherwe would haveto write out the mostgeneralform of the propagatorin termsof
known spin termsandunknownscalarfunctionsof q2. Then we would determine,through the Ward
identities, the longitudinal part of the vertex and solve the resulting coupled integral equations.To
simplify this discussionwe shall makethe ansatzthat the singularpart of the propagatoris proportional
to the free propagator,with the lattergiven in (D.3),

~ — — iZ(q2) I — n~q~+j~q~+ ng
4L~qV (6 32)

,q,— q
2+ie ~ n q (n ~q)2 .

If Z(q2) -~-11q2, then accordingto the discussionsin the beginning of this section, we will obtain
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confinement.Finite Z would yield a Coulomb like potential.This ansatzyields a simple form of the
“inverse” propagator

= iZ’ (q2)[q2g,~.,.— q~q~] (6.33)

andthe Ward identity, eq. (D.8), can be solvedfor the longitudinal vertex [6.6,6.10]

FA~~(p,q, r) = —{gA~[Z’(p2)p~— Z’(q2)q~]

+[Z1(p2)— Zt(q2)][p qg~— q~p~~}(q—p)J(p2—q2)

+cyclic permutationsof A, p., v}. (6.34)

Both the propagator,(6.32), andthe vertex, (6.34),dependon one unknownscalarfunction Z(q2). We
insert theseresultsinto the integralequation,(6.31), to obtain an equationfor this function. The spin
structureis simplified by contractingboth sides with the vector n,,. We now see why this procedure
eliminatesthe last two diagramsof fig. 6.3. Both of thesediagramsinvolve a bare four gluon vertex
couplingan externalline to afull propagator.This vertexcontainsno derivatives;it consistsof a sum of
termsas g,LvgA~,wherethe indicesrefer to the polarizationsof the lines enteringthe vertex.Thus,upon
contractingthe diagramwith n,~,we alwaysobtainexpressionsinvolving nALIAn; this expressionvanishes.
This argumentdoesnot hold for the seconddiagrambecausethen,, canbe contractedwith someof the
momentain the vertex; it doesnot hold for the tadpolediagrambecausethe indicescorrespondingto
the outsidelinescan be contractedyielding afactor of n2.

Proceedingas outlined above,we obtain

q2(1 — l/y) Z’(q) = q2(1 — l/y) + g2f (dk)K~.(k,k’, n)

~ Z(k’) Z(q) (q + k’)
0q~.+ Z(k)&.,,.

~Z(k2)—Z(2k’)(k . k’ t5,nr’ kcy ka’)~+c(y). (6.35)

In the above,k’ = q — k and

y = n
2q21(n . q)2

— n (k — k’) n k’ A (0)(~\ A (~)n.-’

— ~ Au~J ~ Au’V~

c(y) = —f (dk)Z(k) (2 + y)/k2.

Gauge invariance requires that the q2 independent, quadratically divergent c(y) cancelsa similar term
from the integral(this is the requirementthat no massterms appearin the gaugepotentialpropagator).
Before proceedingwith the solution we must renormalizethis equation.Let us assumethat we have
regularizedthis equationin such a way as to eliminateall quadraticdivergences.We still must worry
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aboutthe logarithmicones.We can rewriteeq. (6.35)

= 1 + g2 f K(k, q, n)Z(k)(dk)+ g2 Z1(q)f L(k, q, n) Z(k) Z(q — k)(dk). (6.37)

This equationstill containslogarithmicdivergences.Renormalizabilityof the underlyingtheory guaran-
tees that thesecan be eliminatedby defining a renormalized ZR(q) and a renormalizedcoupling
constantg. ZR(q) is definedto be oneat q

4. = M,., for somefixed ~.

Z(q) = ZR(q) Z(M). (6.38)

Defining a renormalizedcouplingconstant

g~(M)= g
2 Z(M) , (6.39)

1 + g2 Z(M)f (dk)K(k, M, n) ZR(k)

which in view of (6.37)is also given by

g~(M)= g2 Z2(M) , (6.40)
1 — g2 Z2(M)f (dk)L(k, M, n) Z~(k)ZR(M — k)

we find an integralequationinvolving only finite quantities

Zp..(q) 1 + g~(M)J [K(k, q, n)—K(k,M, n)] Z~(k)(dk)

+ g~(M)f [L(k, q, n)ZR(q— k)— L(k,M, n) ZR(M— k)] ZR(k)(dk). (6.41)
g(q)

Let us first look at perturbationtheory; it should be valid in the asymptoticallyfree ultraviolet region.
We will not go into details,but the resultsare (combinedwith a renormalizationgroupargument)

ZR(q)—* (1 + g~(M)ln(q2/M2)Iir2)’1116. (6.42)

Theexactresult is (eq. (6.2))

Z
9(q)—~(1 + 11g

2(M)ln(q2IM2)116ir2). (6.43)

To first order in g2 the resultsagree.We do not expect completeagreementas the neglect of the
transversepart of the verticesas well as our ansatzon the propagatorwas gearedto the infrared.An
exactsolutionof eq. (6.41)is beyondourscope.An approximatesolutionbasedon atrial functionwith
adjustableparameterswas obtained[6.7]. With confinementand eq. (6.42) in mind, the form chosen
was

ZR(M) = + (1 — A)g2(M2+p.~)(i + g2(~)In (6.44)
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A, ,.i2/M and p.3/M arevariationalparameters.Solutionswith input andoutputZR(q)matching closely
for 0<q

2<2.5 andindependentof y to 5% are shown in fig. 6.4 [6.11],A~0 indicatesan infrared
singularity implying confinement.

A comparisonwith previousresults can be made through the f3-function. We use eq. (6.39) to
re-expressthe finite coupling constantg2(q)at somearbitrary point as a function of the equally finite
constantat a fixed valueq2 = M2,

g~(q)= g~(M)ZR(q)~f (dk) [K(k, q, n)—K(k,M, n)] ZR(k). (6.45)

From this we obtain13(q)= —q ôg/8q.Resultsbasedon the approximatesolution,eq. (6.44), areshown
in fig. 6.5. Qualitatively, they are the same as comparablefunctions basedon the strong coupling
expansion,fig. 5.1. The transition from strong to weak coupling is not as rapid and it occursfor
somewhathigher valuesof g. This maybedue in part to the inadequacyof this treatmentat smallg, as
shown in (6.42) and (6.43). Differencesin definitions of the coupling constantmakeit difficult to give
precisecomparisonsbetweenthe variousapproaches.

The secondstudy [6.7] of the Dyson—Schwingerequationsmakesfurther simplifying assumptions.
Comparing(6.32) and(6.34)we notethat correctionsto the threegluon vertexarepartially cancelledby
correctionsto thepropagator.This is truefor the supposedlysingularpartsof the corrections.Assuming
completecancellation,the first two termsof fig. 6.3reduceto thosedepictedin fig. 6.6. Neglectingfour
gluon couplings(the tadpolediagram is removedby massrenormalization)andFadeev—Popovghosts
[2.2](we work in acovariantLandaugauge)the new versionof eq. (6.31) is

= i(q2g,~~— q,
4q~)+ ~f (dp)iF°(q,—r, —p)/iAg(r) LI ~ iF~,~’(q,r, p). (6.46)
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Fig. 6.4. Approximatesolutionof theDyson—Schwingerequations.Thetwo curvesarefor different valuesof thegaugeparametery = n2q21(n- q)2.
[J.Ball, pnvatecommunication,]
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Fig. 6.5. Renormahizationgroup/3-function from thesolutionof theapproximateDyson—Schwingerequation.(From ref. [6.61.)

In the Landaugaugethe propagatoris

7( 2\

A ( \__‘‘~~q.....Lr — j 2~ ~ qMqVIq

with ir,,~as in (6.33).Eq. (6.46) providesthe desiredequationfor Z:

Z(q2) = [i — K(q2, k2) Z(k2) dk2]. (6.48)

K(q2, k2) is a known kinematic function. This equationhasbeen solved numerically with an ansatz
similar to (6.44) andagainyields a non-zerovaluefor A, implying confinement.

Whatarethe shortcomingsof theseapproaches?
1. Is a calculationof the gluon propagatormeaningful?In a confiningtheory it doesnot exist asit is

not gaugeinvariant.
2. How importantin determiningtheinterquarkpotentialarethe other termsof eq. (6.26)or (6.30)?

This questionis addressedin ref. [6.7].
3. How valid are the various truncationsof the Dyson—Schwingerequations?Doesthat part of the

vertexdeterminedby the Ward identitiesdrivethe infraredsingularitiesof the propagator?
In spiteof points1 and2 above,it is possiblethat the/3 function calculatedin this approachmaybe a

=

[—Y +

Fig. 6.6. Dyson—Schwingerequationassuminga full cancellationof the singularpartsof thevertexand propagator.
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correctone basedon somerenormalizationscheme.The absenceof zeroesbetweenstrong andweak
couplingswould indicateconfinement.

7. Electric-magneticduality andthephasesof QCD

The approximateresults discussed in the earlier sections indicate that the perturbative, small
couplingconstantregime, and the large coupling one are in the samephase.As the strong coupling
phasedoesconfineandif we takethe previousresultsseriously,thenQCD is a theory with permanent
quark confinenient. However, all the previousresults are approximateand for several of the ap-
proximationsare hard, if not impossible,to improve upon.Certainly, it would be desirableto have
nonapproximateresults.To datesuch argumentshavenot beenable to determinewhetherQCD does
or doesnot confine. They havebeenable to illuminate the possiblephasesof QCD. Thesetechniques
also isolate which featuresof non-Abeliantheoriesmaybe responsiblefor confinement.Somelimited
numericalwork hasbeendonebasedon argumentsto be presented.

The inspirationfor thesestudiescomesfrom statisticalmechanics.The techniquewe wish to borrow
from that area is the Kramers—Wannier[7.1] duality transformation.In statistical mechanicsthis
transformationrelateshigh andlow temperaturephasesof a theory.In our case,such atransformation,
if it exists, would relatestrongandweak coupling regimes.In the strong couplingregion confinement
comesabouteasily, while in the perturbativeoneLorentz invarianceis manifest.The advantageof such
transformationsis that we could transform a theory with one set of known propertiesinto a domain
wherethe otheronescould be studiedwith relativeease.

It is straightforward to implement such transformationsin the case of Abelian theories. For
non-Abelian theories,even non-gaugeones,there is no simple generalizationof such duality trans-
formations.An inspectionof the QCD Hamiltonian, eq. (3.2), showsthat a transformationof g *-~ g1
involvesa transformationof E ~ B. The ideal situationwould havebeenhadit beenpossibleto find a
potentialA’ dual to the usualvectorpotentialA such that the relationsof the electric and magnetic
fields to A’ were the oppositeof thoseto A. An attemptalongthis line hasbeenmade[7.2].We shall
presenta different approachdueto ‘t Hooft [7.3].Not only do we find the possiblephasesof QCD but
alsothe featuresnecessaryfor confinement.

As mentionedearlier, a duality transformationinvolves an interchangeof electric andmagnetic
gaugefields. We do not expectan eigenstateof the QCD Hamiltonian,or morespecifically the vacuum
eigenstateto have definite values for such field variables. In non-Abelian theories operatorsfor
magneticandelectric fields are not evengaugeinvariant.In Abelian theorieswe might hopeto classify
statesby the amountof electricor magneticflux they possess.For non-Abeliantheories,eventhis will
turn out to be subtle.

If spaceis unconstrainedno directions are preferred and we do not expect flux through some
arbitrary surfaceto be relevant.For this discussionit is Convenientto constrainthe world to a box with
dimensionsa

1, a2, a3 and at the endstudy the thermodynamiclimit a, -~ oc. We may then discussthe
fluxes along thesepreferred directions. A flux tube can be preventedfrom wandering from one
direction to anotherby giving the systemthe geometryof a torus,namelyidentifying oppositesides.
What this implies for the gaugepotentialswill be discussedfurtheron.

What relevancedoesthis havefor confinement?Let usconsidera quark andantiquarkseparatedby
alarge distancealong thethreedirection.Gauss’ law forcesusto havea definite amountof electric flux
alongthis direction.We thenaskwhat is the energyof a configurationwith a certainamountof flux in
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this direction. In a perturbative or nonconfining regime the flux spreads out in the transverse directions
andthe energybehavesas a31a1a2. In the a —* ~ limit it goesto zero,If confinementholdswe expect
the electric flux to be concentratedinto tubesof fixed transversesize and the energyto behaveas a3.
Thus the behaviorof a configurationwith a definite amountof electricflux determineswhetheratheory
doesor doesnot confine.

7.1. Definitionof magneticflux

It is a standardexerciseof classicalelectrodynamicsto find the vectorpotentialoutsideamagnetized
infinite cylinder. We assumethe magnetizationis uniform andthe total flux through any surfacein cP.
For a cylinder stretchingalongthe 3 direction the answer is A3 = 0 and the transverse components, in
cylindrical coordinatesare

A1=-~-~. (7.1)
2ir p

As expectedA is a puregauge

A=~-Vç. (7.2)

The “gauge function” (ePço/2ir) is not single valued. The jump in this function in going arounda
magnetizedcylinder is just eP. If chargedfields arepresentandwe want thispotentialto haveno effect
on them(no Bohm—Aharanoveffect) werequirethat the gaugetransformationbe single valued,or that

= 2imje. Of coursethis potentialsatisfiesthe usualdefinition of magneticflux

= JH . ds = A ‘dl. (7.3)

The form of A in eq. (7.2) is not convenient for the periodic geometrywe havein mind.
Fora rectangulararea—a1/2< x<a1/2, —a2/2< y <a2/2thefield outsidesomeflux can equallybe a

puregaugegeneratedby the nonsinglevaluedfunction

A(x y)=-~-arcsin(~’~. (7.4)2ir ~a2i

A is continuousaswe go aroundthe boundaryof the rectangleandhasajump discontinuityat x = a1/2,
y = 0. The potential generatedby (7.4) is periodic in the y direction and changessign between
x = —a1/2and x = a1/2. In what sensedo we haveperiodicity?

A(a1/2, y) = A(—a1/2,y) + V(2A). (7.5)

The correspondingtransformationon achargedfield is exp(2ieA).Requiringthis gaugetransformation
to besingle valuedplacesthe samerestrictionon cP as discussedearlier.

Such argumentsmay be carried over to the non-Abeliancase.We will consider not only truly
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periodic potentials,but also potentialswhich areperiodic up to gaugetransformations

A(a1/2,y) = D1(y)A(—a1/2,y)
12

1(y)+ (i/g) Qt(,y)VD1(y) (7 6)

A(x, a2/2)= i2~(x)A(x, —a2/2)112(x)+ (i/g) f1~(x)V112(x).

A furthergaugetransformationcan bring f12 to unity andwe thenhavea situationanalogousto (7.5).
Singlevaluednesswould require ~1~(—a2/2)= ~1(a2/2).This is too restrictive[7.5]. As long as thereare
no nonzerotriality fields present(no dynamicalquarks)thenit is sufficientto demandthat

111(a2/2)=111(—a2/2)z (7.7)

with z E Z3 the centerof the group.The centerof SU(3)consistsof elementsof the form

z = exp2ir imQ

1 (_~ (7.8)

-1 2)

If we do not insist that 112 is the identity transformation,then (7.7) generalizesto

f1~(a2/2)[22(—a1/2)= 02(a1i2)[l1(—a~/2)z. (7.9)

Thenon-Abelianversionsof (7.2) and(7.4) are

S(x,y) = exp[imçQ] (7.lOa)

S(x, y) = exp[im arcsin(2y/a2)Q]. (7.lOb)

Applying either of the abovetransformationsincreasesthe “magnetic flux” by m units (moduloN) in
the threedirection.This discussionmaybeextendedto otherplanesand“twisted” periodic[7~6]gauge
potentialscan be classifiedby threenumbersrn.

5 This definition of flux in the non-Abeliancaseis quite
differentfrom the Abelianone.There is no analogueof (7.3).

A quantummechanicalstatehavinga prescribedamountof magneticflux m is describedby a wave
functional ç1i,~(A) which vanishesfor A(x) not carrying rn units of flux.

7.2. Definition of electricflux

We againappealto ananalogywith Abelian theoriesin order to defineelectric flux. In such atheory
the commutationrelationsanalogousto eq. (2.7) are

[E
1(x),A1(,y)] = —i5~3(x — y). (7.11)

5Theclassificationof gaugepotentialsinto variousmagnetic flux classesis not unique.Namely,a givenA,, with periodic boundaryconditions
may belong to classeswith different rn’s. For example, the trivial configuration A,, = 0 belongsto classeswith all rn’s. There exist nontrivial
potentialsthat also exhibit ambiguity. It is conjecturedthatsuch nonclassifiablepotentialsform a setof functionalmeasurezero.
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For the moment we considera situationwheresomeelectric flux is confined to a thin tubeof areaa
following some curve C (not necessarilyclosed). Let C be parametrizedby x~(r).The operator
determiningthe amountof flux alongC is

dx / dx
FE(x)=aE~—/ ~— . (7.12)

A state,describedby q(A), is saidto havea certainflux alongC if it is an eigenstateof FE. It is easyto
seethat the operator

~~=expigfA.dl (7.13)

createsaunit of flux alongC. This follows from the commutationrelations(7.11)

FE(x)~C~fr(A)=~CFE1(!(A)+g~C~JJ(A). (7.14)

This conceptmaybe generalizedto non-Abeliantheoriesby defining thecreationoperatorfor aunit

of electric flux (in units of g) alongthe 3 direction to be

~3P expigfA’dl. (7.15)

A is nowthe non-Abelianvectorpotential.C is any curveconnectingx3 = —a3/2andx3 = a3/2(a3 is the
extentof our box world in the threedirection). Although C could haveany shapewe shall in the future
take it to be a straight line going alongthe 3 direction.Its location in the 1—2 planeis arbitrary.Given a
statewith no electric flux, tfro(A), ~ actingon it createsa unit of flux in the 3 direction

= çfre3(A). (7.16)

We maygeneralizeto any of the othertwo directionsto define~fre(A).Thereis anotherway of looking
at stateswith electric flux which clarifies how to choose i~’oandplacesrestrictionson the integersea.
Considera gaugetransformationgk such that it is unity on the x3 = —a3/2 planeand belongsto the
center for x3 = a3/2. On that plane g~,= exp(2ir ik3)/3. It is easy to see that under such gauge
transformations

gk3~’3(c) g~ = exp(2irik3/3) ~‘3(c) (7.17)

andthus

gkllIe3(A) = exp(2n-~ (7.18)

We choose~fr0(A)to be invariant underthe transformationsg~andthus

ga~fre(A)= exp(27rik . e/3) ti’e(A). (7.19)
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Thus we see that we can distinguishthe integerse,. only within module 3 classes.We will also need
eigenstatesof ~ (c). Thesearesuperpositionsof the 4!le,

~/i(k;A) = ~ exp(2wik e/3)~fr~(A) (7.20a)

~‘a(c)~(k; A) = exp(2irikJ3) i/’(k; A) (7.20b)

g, çle(k; A) = ~fr(k+ 1; A). (7.20c)

7.3. Energyofconfigurationswith specifiedelectricand magneticflux

We maynow combinethe ideasof the previoustwo sectionsanddefinestateswith both electricand
magneticflux. A statewith magneticflux vectorm andelectric flux vectore is denotedby cfre;m(A). We
alsodefinestatesanalogousto thoseof (7.20)

cbm(k; A) = \/2~ exp(—2irie k/3) cli,;m(A). (7.21)

The energyof this configurationmaybe determinedby studying

exp[—/3F(e, m; a, /3)] = ~ (cb~’;m(A),e~’~pe;m(A)). (7.22)

H is the QCD Hamiltonian; /3 is a Euclidian time (we use/3 to draw out the analogywith statistical
mechanics);aa is the lengthof ourbox world in the a direction.Thesummationon the right handside
is over all statesconsistentwith the specifiedelectricand magneticflux configurations. In the large/3
limit F approachesthe energyof the groundstatesubject to the given electricandmagneticfluxes. (In
order to preventdoublecounting a resolutionof the questionsraised in footnote4 must be made.)
Define

W(k, k’; m; ~, 13) = ~ cfrm(k’; A) e”~”ifrm(k;A) (7.23)

then

exp(—$F)= exp{2ir i(k — k’)’ e/3} W(k, k’; .. .). (7.24)

We can sumover k, k’ keepingq = k — k’ fixed andlet

W(q;m;a,f3)=~W(q+k,k;m;a,/3).

(It is also true that (W(k, k’;. . .)) depends only on the difference k — k’.) Repeating (7.22) we obtain

exp — [13F(e,rn; a, /3)1 = ~ exp(2rr iq e/3) (W(q,rn; a, /3)). (7.25)
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Whatis the purposeof introducingthe functions W? It turns out that theyhavepropertiesthat can be
easilycarriedover from the electric to the magneticcase.

The W’s have a functional integral representationsimilar to the standardvacuum amplitudes.
Equations(7.6) and (7.20) providethe necessarymodifications

m; a, /3)) f [dA]qm exp[_f L d4x]. (7.26)

The x integrationis restrictedto the previouslydescribedbox of lengthsa, in the threedirections,and
to /3 in the t direction. The notation [dA]q;m implies that the functional integration is restrictedto
potential configurationssatisfyingtwisted periodic boundaryconditions. The magneticflux restriction
forces the potentialsto obey periodicities in the i—j planeas given in (7.9) and thosein the t—i plane
given by q1. The latter follows from (7.23) and (7.20c). All theseresultsmaybe summarizedin a four
dimensionalnotation (cf. (7.6))

A(. ~‘. .) = 117A(.. - ~. .)fl~+ -~ QtVQI, (7.27)

with thedotsdenotingtheotherthreevariables;11, is likewiseafunctionof thesethreevariables.Following
(7.9) we define n0 by

.~.. ~ . ._~. . .)j~(. . .~. . .)g~(..._~. ..)exp[2irinQ] (7.28)

This translatesinto the following relationsto the magneticandelectricfluxes

= �0kmk (i,j = 1,2,3) (7.29)

n~,= q.

7.4. Duality

We arefamiliar with thefact thatLorentz transformationsmix up electricandmagneticfields.Theonly
remanentof Lorentzor really Euclidianinvariancewe haveis 90°rotations.Considerthe transformation
which changesthe unit vectors,~, along our four dimensionalbox as follows

Xt~~*X2, X2~~’Xt
(7.30)

x3-.+—xt, x~—.*x3.

Closed curvesin the ij planesalsochange

C23+-*C15, C13~-s’C2, (731)

C12 ‘~—~C12, C2, ~ C13.

If we denote the first two componentsof a three vector k by !Z and this two vector with its
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componentsinterchangedby E wefind that in W(q, m; a, /3)

(a, a3, /3) ~ (a,/3, a3)

in~-~4
(7.32)

m3~ m3

q3 .+ q3,

and thus, using (7.29)

W(4, q3, in, m3 a, a3, /3) = W(in, q3, A~,m3 a, /3, a3), (7.33)

and

exp[—/3F(ë, e3, in, m3a, a3, /3)J = ~exp{~-~[4e— in . !]} exp[—a3F(! e3,4, m5 a, ~, a3)].

(7.34)

Equation(7.34) is the basisfor the electric-magneticduality. It relatesconfigurationswith electric and
magneticfluxes, in somedirections,interchanged.It is exact.

7.5. Flux energies

As the third componentsdo not play a role in this discussionlet us set e3= m3= 0. If no massless
particlesare presentlargevolume and/3 limits are approachedexponentially.Let a~,/3 —~cc• Not all F
can approach zero. If they did, then the right handside of (7.34) would approach5(e)S(in), implying
that only F(0, 0; a, a3/3) is zero. Consistencywith (7.34) demandsthat 9 of the 81 possible flux
combinationsyield vanishing~F’s; theseare referredto as light fluxes. Cancellationof the imaginary
termsrequiresthat if (it, in1) and (e2, in2) arelight fluxes then

in2= ê2~in~ (mod 3). (7.35)

As W(4,in; a, 13) is a sum of diagonalmatrix elementsof positive operators,exp— /3H, it itself is
positive. Equation(7.24) implies that if some (e, in) is a light flux, thensomeof the W(q, in; a, $) are
nonzeroand in turn exp[—/3F(0, in; a, /3)] is nonzeroimplying that (0, in) is a light flux. If (ë~in) is a
light flux, (7.35) implies that é in = 0. Let usconsiderë and in both in the 1 direction.We then have
é~in1= 0 which implies that either e1 or m1= 0.6 This, plus invarianceunderthe interchangeof 1 and2
and the requirement that there are 9 light fluxes leads us to the solution that either all electric or all
magnetic fluxes are light. All other flux combinationsleadto infinite F’s. Thesearereferredto as heavy
fluxes.

How do we expectthe F’s forthesesituationsto behave?In Abeliantheoriesa flux in the 1 direction
is createdby fields that spreadout in the 2 and 3 directionsand the energyof such aconfigurationis

E F Ca1/a2a3. (7.36)

6Hadwe beendealingwith SU(4) thenfore = rn = 2. ~ith

1 = 0 (mod4) andwe would obtain moresolutionsof (7.35).
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As the box size increasesF tendsto zero.For the heavyfluxes we do not havea rigorousargumentfor
how their energy behaves, but our intuition tells us that the flux will be confined to a long tubewith a
finite, fixed thickness. For a heavy flux in the one direction

E=F—oa1. (7.37)

if will turn out to be the stringtensiondiscussedin previoussections.With assumption(7.37) it will be
possible to obtain the energiesof configurationswith light fluxes. We need, howeverone more
assumption,namelythat whicheverfluxes,electricor magneticarelight or heavywe have

F(e,rn; a, 13) a.f3.-. Fe~ a,13)+ Fm(m; a, /3). (7.38)

This is a reasonableassumption;it is true for Abelian theoriesand if the heavy fluxes occupy a
negligible portion of spacewhile the light ones fill up all of it, the interferencebetweenthem is
negligible evenfor non-Abeliansituations.

With the arguments presented thus far, we have no way of telling whetherit is the electric or
magneticfluxes that areheavy or light. For the presentdiscussionlet usassumethat it is the electric
fluxes that are heavy— this correspondsto a confining situation.The role of electricandmagneticfluxes
is interchangeable.We first wish to evaluateFe(e; a,/3).We havemadethe assumption,eq. (7.37)that a
single flux tube in direction i hasenergyon,. The summationover statescarryinga fixed electric flux
includesa summationoverthe numberof suchfundamentaltubesaswell as their positions.A flux tube,
in say the one direction, will contribute

= Aa2a3exp(—/3crai) (7.39)

to exp(—/3F~).The exponentis, dueto (7.37),just thefactorexp(—$H);a2a3 comesfrom the summation
over positionsof this tube; A is an undeterminedcoefficient reflecting the normalization of these
wavefunctions.Summingover a numberof suchtubesin both the 1 and2 direction,wefind

exp[—/3F~(e;a, /3)+ c(a, /3)1

= ~ (n~)!(nn~)!(n~)!yflt~y~~251(~ — n~— e1)53(n~— n~— e2). (7.40)

The summationis overfluxes carryingoneunit up or down the ath direction.Flux tubescarrying n> 1
units of flux contribute exp(—/3n

2ua),and can be neglectedcomparedto n = 1; flux tubes along
diagonals, i.e., é= (1, 1) contributeexp—f3o’\/a~+ a~and are less important than the onesretained.
Using the definition

5
3(n)= exp(—2~rinki3), (7.41)

we obtain

exp{—/3(Fe+ c)} = ~ exp{21rilZ’ é/3+ ~ 2y,. cos~ (7.42)
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c will be determinedfrom the requirementthat Fe(0; a, j3) = 0. Note that for e�0 F~(e,a)-+~ as
expected.(7.12) is in a form wherewe can easilyapply the duality relation (7.36)to find

exp{—a~sFm(th,0; a, f3a3)} exp[~2y~~(cos2irina — i)J. (7.43)

We haveincorporatedthe requirementthat Fm(0;a)= 0, andobtain

Em(m;a) = 2A(i — cos21Trn~) exp[—ue~~a0a~]. (7.44)

The energy of a configuration with one unit of flux in the one direction is proportional to
a1 exp(—o-a2a3)and thus vanishes as the box is extended in all directions.We find the result that if the
electric fluxes are heavy, thenin the thermodynamiclimit thereare no restrictionson the amountof
magnetic flux the ground stateof the systemmay contain. Had we chosenthe magneticfluxes to be
heavy,then this statementcould be madeaboutthe electricpropertiesof the groundstate.

Whydo we refer to the situationwith heavyelectric fluxes as the confining phase?A statewith one
unit of flux can be createdby placing a quark andantiquarkat oppositewalls of our box. The energy
would be as given in (7.37) which is the familiar linear potential discussedpreviously. What are the
characteristicsof a phasewhere the magneticfluxes are heavy? In analogywith the above, magnetic
chargeswould be confined;electricsourcescould moveapartas muchas onewished,astheir energyof
separationwould rapidly go to zero as indicatedby (7.44), with electric and magnetic indices inter-
changed.Only short range interactionsremain indicating that the gauge potentialsbecomemassive.
This is a signal that a Higgs mechanism[2.2] took over, andthis phaseis referredto as a Higgs phase.

Are other phasespossible?Yes, if masslessparticles are present and some of the previous
interchangesof limits arenot valid. This new phasepartly resemblesQED in that masslessreal gluons
would exist as physical particles.This phasecould be the perturbativeone or onewith a partial Higgs
mechanismoperating,and oneor severalU(1) subgroupsremainingunbrokenand their gaugefields
turning into real states.In both thesecasesthe groundstateof the theory would be a superpositionof
stateswith variousamountof electricandmagneticflux.

7.6. Applications

Cantheseconsiderationsbe put to useto helpus resolvethe centralquestionasto whetherQCD is a
confiningtheory?A strongcoupling constantexpansion[7.7]of the vortex energiesvery similar to the
expansionfor the string tensiondiscussedin sections3 and 4 hasbeencarri~dout. The resultsare
consistentwith the confining nature of QCD. An interestingnumericalevaluation of Fm hasbeen
performedby a MonteCarlointegrationsimilar to that presentedin section4. In this work the periodic
world was discretizedinto a lattice. The calculationswere limited to lattices of size 54, Again, due to
numericalcomplications,the calculationswereperformedfor an SU(2)ratherthanan SU(3) theory.For
a d

4 lattice the quantityevaluatedwas

~t(g, d) = ~d[Fm(0; d, d) Fm(1
3 d, d)], (7.45)

13 denotesa unit of magneticflux in the 3 direction.From previousarguments,~ (g,d) should, for a
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confining theory,approachzeroas d increases.For largeg the theory doesconfineandthuswe expect
~L to approachzero.This is true evenfor finite d. For g = ~, dFm(m;d, d) is the entropyof the system
with a restrictionon the boundaryconditionsof the toroidal world. Thetotal numberof configurations
is independentof theseboundaryconditions,thus

(7.46)

andwe can restrictourselvesto an evaluationof 3/.Lit9g. It turns out that it is simpler to evaluatethe
latterby MonteCarlo techniques.Theresultsarepresentedin fig. 7.1. Figure7.1(a)showstheresultsof
the Monte Carlo calculationson 34, 44 and 54 lattices togetherwith smoothcurvesthrough the data.
Thesecurvesarebasedon theoreticalprejudice[7.9] andarereplottedin fig. 7.1(b). As the numberof

3 . ..,.:. 34 lattice

.~7:1.
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4 lattice
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3 54 lattice

“ ‘2!O
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—— 34 lattice
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2~ ,‘ ~\/ ~\

—g 8j.t ,

2 ag I - J ,

I I .~1 ..‘i.”i I I
2.0 2.0 3.0

hg
2

(b)

Fig. 7.1. MonteCarlo calculationof thederivativeof thefreeenergydiflerencesbetweenconfigurationswith oneunit andno units of magneticflux
(a); theoreticalfits to the samequantity for variouslattice sizes(b).
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latticepointsincreasestheregion where I9~/8gis small (possiblyzero)extendstowardssmallervaluesof
g. Should this pattern persist then o~/ag would vanish in the thermodynamiclimit, and as a
consequenceof (7.46) sowould~ itself.

A variational approachconsistent with the previousdiscussions,even though predatingit, was
Mandelstam’strial vacuum[7.10]consistingof a gasof magneticmonopoles.As we saw in a confining
phaseelectric flux is squeezedinto thin tubes.In an ordinarysuperconductorthe oppositephenomenon
takesplace— magneticfields aresqueezedinto vortices(theMeisnereffect). In a superconductorit is the
free electricchargesthat form a solenoidaroundanymagneticflux and keepit from spreadingin the
transversedirection.Thus we expectthat if electric flux is trappedinto vortices then theremust be a
solenoidalcurrent of magneticmonopolesdoing this confining. Q.C.D. doeshave such monopoles,
namely the Wu—Yang [7.11] solutions of the static Q.C.D. equations.A vacuum build up of a
superconductinggasof such monopolesdoeshavealower energythanthe perturbativeone.We do not,
howeverknow whetherit is the “best” vacuumstate,and the renormalizationdifficulties are severe
enoughto preventa systematicimprovementon this trial state.

Anotherthing we havelearnedfrom theseconsiderationsis what topologicalstructuresarenecessary
to obtainconfinement.By thiswe meanthe configurationsin a functionalintegralformulationof QCD
that will result in an arealaw for the Wilson loop. We haveno guaranteethat theseconfigurations
actually saturatethe functional integral. The configurationswe have in mind aregaugeequivalentto
A,. = 0 almosteverywhere.Due to certainnonsinglevaluednesstheydo contributeto the Wilson loop,
C. We assumethat thesediscontinuitiesactat isolatedpointsalongC. By continuity thesepointsbelong
to athreedimensionalvolume boundedby sometwo dimensionalclosedsurface.Therearesome,as yet
unspecified,currentson thesesurfacesthat generatethe potentialsA,.. A prototypeexpressionis

A,.(x)= ~ [(x ~ (7.47)

Theintegrationis over a closedtwo dimensionalsurface,s, whoseinfinitesimalareaelementis denoted
by dsA0,; Q is the generatorof the centerof the group, i.e. exp2ir iQ E Z3. An elementarycalculation
yields

g A ‘dx = 2rrQW[C, s] (7.48)

where W[C, si counts the number of times the curve C winds around the surfaces. [(7.45) is a
generalizationto four dimensionsof Gauss’ formula for the winding number of two curves in three
dimensions.]The contributionto the Wilson loop of this configurationis

~~-~exp{i~ A ‘dx] = exp{~~W[C, s]}. (7.49)

A winding number1 (mod3) is obtainedif the surfaces andany surfacewith C as a boundaryintersect
once.As the size of the curve C increases,“small” surfacess will do this only if they arelocatednear
the peripheryC itself. ConfigurationswhoseA,. is generatedby such “small” surfaceswill contribute
termsvanishingas an exponentialof the circumferenceof C. In order to obtain the desiredarealaw
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surfaceswhose size is of the samemagnitudeas C must contribute[7.12].Do we expectsuch large
surfacesto be important?Thefield strengthtensorcorrespondingto (7.45) is

F,.~(x)= Qe,.~f 5~(x— y) ds~~,/g. (7.50)

If we thickenthe surface,i.e. renormalizethe theory, thenthe actionof this configurationis

Tr f F,.~F,.rd4x -~S/g2. (7.51)

S is the areaof the surface.A priori it might appearthat largesurfacesaresuppressed;thissuppression
might be compensatedby the number of surfaces of a given area, namely the entropy of the
configurations.We expect the entropy to be at best proportional to S itself and thereforefor g

sufficiently large, large surfaces are favored and an area law will result. Actually the entropy of free
surfacesmay grow faster than S (see discussionat the end of section 8.2) and restrictionsas to
self-intersectionsmayhaveto be imposed.With suchrestrictionsin force we do not possesstechniques
to evaluatethis entropyandcannot,at present,saywhethersuch largesurfacesareimportantfor all g.

What connectiondo thesesurfaceshaveto thefield configurationsin abox?We saw that magnetic
flux tubesare importantin a confining vacuum.The time evolutionof such tubesare surfacesin four
dimensions.

8. Loop field theories

In ordinary nongaugetheoriesthe quantitiesof interest arethe Wightman functionsof Minkowski

space or their continuations to the Euclidian region, the Schwinger functions. These are vacuum
expectationvaluesof productsof field operators.For gaugetheoriessuchproductsof gaugepotentials
are not gaugeinvariant and their expectationvaluesin the true vacuumof the theory may not even
exist. Although we did concernourselveswith such productsin earlier sections,most of the time we
studiedgaugeinvariantoperatorssuchas the Wilson loopoperator,eq. (2.12).More generallywe could
studyexpectationvaluesof the form

W[C
1. . . C~]= (Tr exp{i J A . dl}. . . Tr exp{i J A’ dl)) (8.1)

with the C, ‘s arbitraryclosedcurves.For the gaugegroupSU(3)operatorsof the form (seeeq. (2.11))

U(x, y; C1, C2, C3) = dhikdtm~~ U
0(x, y; Ci)Uim(x, y; C

2)U”(x, y; C3) (8.2)

are likewise allowed as arethe operatorsM(x, y; C) of eq. (2.12), if quarksarepresent.For nongauge
theoriestherearereconstructiontheorems[8.1] that permit the determinationof the propertiesof the
physicalHubertspacefrom the Wightmanfunctions.No suchtheoremsexist for the presentcase.It is
temptingto speculatethat thesegaugeinvariant expectationvaluesimply anunderlyinggaugeinvariant
Hilbert space. We shall concentrateon how thesefunctionsmay be used to establishwhether these
theoriesconfine.Wilson’s criterionfor W[C] is the mostnaturalin thiscontext.For this reason,andfor
easeof presentation,we will limit our discussionprimarily to the W[C1. . . C,,], andmorespecifically to
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just W[C). Thedynamicsof the theory will forceus to look at moreinvolved operators.The equations
satisfiedby theseioop expectationvalues are very reminiscentof the equationsappearingin dual
resonancemodels[8.2].

This approachis a new way of looking at gauge theories. Its main advantageis that it can be
formulatedin a continuumlanguage;thusLorentz invarianceis at least formally maintained,while at
the sametime only gaugeinvariant structuresarediscussed.If developedfurther it could combinethe
bestfeaturesof lattice theoriesandcontinuumtheories.At presentthe mathematicsis sufficiently new
anduntestedthat wehavevery little experiencein solvingtheresultingequations,andwe cannotisolate
the featuresof the equations that could be responsiblefor confinement.Similar equations for
presumablynonconfiningQED would not look too different.All we can say, by combiningideasof this
andprevioussections,is that if confinementholdsthenthe numbersthat arisefrom thevariousanalyses
areconsistentwith eachother.It maybe hopedthat upondeeperanalysistheseloopfield equationswill
be ableto establishconfinementby themselvesand evenprovidea basisfor a phenomenology.

8.1. Functionalequationsfor loop operators

Before deriving equationsfor the expectationvalues of loop operatorswe have to discuss the
parametrizationof curves.A curveC startingat x~2andendingatx~is parametrizedby a set of points
x,. (s), with 0� s � 2ir, such that x,.(0) = x~2and x,.(2rr) = x~.For a closed curve x,. (0) = x,. (2i~).
Parametrizationsare not unique.If f(s) is anyfunction of s such that f(s) is monotonicwith f(0) = 0,
andf(2ir) = 2ir, then x,.(f(s)) is as good a parametrizationas the original one. We do not expecta
physical quantity such as W(C) to depend on the parametrization.Consider an infinitesimal
reparametrization

x,.(s)—~x,.(s+c(s))= x,. + c(s)ax,
1j3s. (8.3)

Reparametrizationinvarianceimplies

W[C(x,.(s) + c(s))] = W[C(x,.(s))],

which in turn yields

8x,.(s)SW[C] =
3s Sx,.(s)

To obtain dynamicalequationsfor theseloop operators,we will draw on our experiencewith
ordinary, nongaugetheories.Equationsfor Wightman functionsfollow from the equationsof motion
andequaltime commutationrelations.They areobtainedby comparingsuchfunctionsat infinitesimally
differing points in spacetime.In the presentsituationwe will comparethe W[C]’s for curvesvarying
infinitesimally from eachother[8.3—8.7].Considera displacement(fig. 8.1(a))

x,.(s)—*x,.(s)+�,.(s)

W[C(x,. + ç,)J— W[C(x,.)] = Jdse,.(s) (8.5)
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Wenow wish to obtainan expressionfor 5W/ox,..Expandingthe exponentialwe find that

W[C] = ~ ~ J ds1. . . ds,, Tr PKA,.[x(st)] dx,.(s1)~~. A~[x(s,,)]dx~(sn)) (8.6)

P denotesthe pathorderingO(s1 — S2)~ . . O(s,,.1— s,,). Performingthe variation indicatedin (8.5) we find
that

5A,.[x(s)]=~~e~�~,~ (8.7)

Combiningtheseresultswe obtain

SA,.q~=~ ~ ~-=‘ ~ ~ ~. (8.8)
ds ôx~ ds ds ds 8x~ 0x0, / ds

The variation of (8.6) yields

SW= ~(~‘~1)~f ds~ ds,, Tr P(AA ~. . . ~ ~ . ‘A~p-’). (8.9)

Inserting (8.8) into (8.9), the first term on the right hand side of (8.8) can be integratedby parts,
resultingin 5-functionsfrom the differentiationof the stepfunctionsappearingin P. By usingthe cyclic
propertyof the tracethe resultis

Ox~.(s)= ig Tr({Fav[x(s)] ~ U(x(s),x(s);C))). (8.10)

F,~.is the field strength tensor, eq. (2.1). Let usvary this expressiononcemore.

o
2W 2/ 1 , dXa

Sx~(s’)Sx,.(s)= —g \T
9,O(s— s )F~,,,[x(s)]~

xU(x(s),x(s’); C) F~,.[x(s’)] U(x(s’), x(s), C) + (s ~

+ig 5’(s — s’)(Tr{F,.~[x(s)] U(x(s),x(s);C)}~

+ ig 5(s— s’)(Tr{D~Fa~~J~—U(x(s),x(s);C)]). (8.11)

The first term on the r.h.s. of (8.11)comesfrom varying the pathinside the U matrix. Thesecondterm
is due to a variation of the tangentialderivative and the last arisesfrom varying F,,~itself. D,. is a
covariantderivativeand its non-Abelianpart comesfrom varying U at the point x(s).

Before studying(8.11) let us introduceanothertype of variation of the curve C anda resulting
equationthat W(C) satisfies. Examining fig. 8.1(a)we see that the previousvariation of the curve C
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consistsof addinga “tooth” to C which extendsa distanceI~Iperpendicularto the curve andruns a
distance Idx/dsl along C. The secondtype of variation consistsof adding to C, at the point x, an
infinitesimalcurveenclosingan area5o~,..[8.8,8.9]. This “keyboard”variation is illustratedin fig. 8.1(b)
andmaybe evaluatedby computing U(i ) = exp{ig ~ A ‘dl} for infinitesimal curves~i:

U(ii)= 1+ig~A.dl_g2p~A‘dl~Arndl’

1 + ig(8,.A~— 3,.A,.)&r,.~— g2 J [A,.,Aj &r,.~= 1 + igF,.~Sif,.~. (8.12)

Therefore

Scr,.~.(x)= ig Tr(F,.~(x)U(x, x; C)). (8.13)

It is easyto showthat

3
0SW/&r,,~= ig(TrD0F,.,,U(x, x; C)) (8.14)

which, exceptfor the S-function, is the sameas the last term of (8.11).
Let usconsiderfor the moment the contractedform of (8.14):

8,. SW/&r,.,, = ig(Tr{D,.F~~U(x, x; C)}). (8.15)

The term D,.F,.,. appearsin the equationof motion; we haveto be careful in applyingthesedueto the

noncommutativityof variousoperators.Oneway of evaluatingthe aboveexpressionis throughthe path

~x~(s)

x~Cs)

x~Cs)

Fig. 8.1. Infinitesimal loop displacementor “tooth” derivative(a); infinitesimal addition to a loop or “keyboard” derivative(b).
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integralformalism.We notethat

5A~(x)exP{iJd4xLEA]) = iD,.F~,.exp{i Jd4xL[A]} (8.16)

andtherefore

(8.15)= ~ J [dA] Tr{ U(x, x; C) 5A~(x)}exp{i Jd~xLEA]). (8.17)

A functionalintegrationby parts gives

(8.15) = —g Tr(SA~()U(x, x; C))

= _ig2(Tr{J dy~5(x— y)~-U(x, y; CY~—U(y, x; C))). (8.18)

In this form we notethat (8.15) is nonzerofor self-intersectingcurves;we must havea point y on the
curve coincidentwith the referencepoint x. Do we get a contributionjust from this point itself? To
answerthis questionwe must be morespecific aboutdefining the singularexpressionsappearingin all
the formulas above. For example, the term involving U(x, x; C) should be modified to U(x + c, x —

�; C) with � a smalldisplacementalongC. If C is smootharoundx, thenthispointwill not contributeto
(8.18),but only genuineself-intersectionswill. A different regularizationscheme[8.6]likewise discards
theseS-functionsfor nonintersectingpoints. For a curve with one intersection,splitting C into two
closedcurvesC

1 and C2, onecan usethe completenesspropertiesof the A matricesandthe unit matrix
to simplify

(8.15)= —ig Jdy~5(x— y) ([~tr U(x, x; C1)tr U(x, x; C2) -

—Etr~U(x, x; C1)tr-~--U(x, x; C2) . (8.19)

With theseresultswe now return to (8.11) and let s’ -+ s symmetricallyfrom aboveand below and
contract~ andv. Restrictingdiscussionto nonself-intersectingcurveswe dropthe last term;we alsoset

— s’) = 0. Thus

__________ = —g
2~ ({F,,,.(x){F,

3,.(x),U(x, x; C}+}±)~ (8.20)

Written in this double commutatorform the operatorordering is correct and the result holds for
arbitrary matrix elementsnot just vacuumexpectationvalues.Between(8.20) and (8.19) we havethe
analogsof the field equationsandWard identities for ioop theories.The solutionsof theseequations
mayestablishconfinement.A studyof the solutionsof (8.15)for theoriesbasedon the groupSU(N),in
the limit of largeN hasbeenmade[8.9].
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8.2. Solutionsofapproximateioop equations

Equation(8.20) relatesW[C] to a more complicatedgaugeinvariant quantity.As in ordinary field
theory, the completeset of equationsis infinite. In order to obtainsomeinformation,we must truncate
this set by someapproximation.The form we hopeto maneuver(8.20) into is

Ox,~(s)Sx,.(s)= if2(~_~) WEC] + (self-intersectionterms). (8.21)

if will turn out to be the string tensiondiscussedpreviously.
Equation(8.21) hasappearedin the context of dual resonancetheories[8.2], where~ is equalto

1/2ira’, with a’ the slope of Reggetrajectories.With a’ = 0.9GeV2 we get a reasonableagreement
with thevalueof o given in eq. (2.15).We shallnot pursuetherelationwith thedualmodel further,but
givethe argumentfor the relationof ci in (8.21)to the stringtension.

Generalsolutionsof (8.21)do not exist. Certain specialsolutionsall point to the aboveinterpretation
of ~. In two dimensionswe havea solution of the form

W
2[C] = cnstexp[—~~e,.~,x,.dxv] cnstexp[—ciA], (8.22)

with A denotingthe areaenclosedby C. Upon comparingthis with the Wilson criterion, eq. (2.20),we
obtain the soughtfor interpretationof ~. It is plausibleto extendthisargumentto planarcurvesin four
dimensions.In four dimensionsspecialsolutionshavebeenfound [8.6,8.10]. Let

= ~f x,. dx~

and

A~= V(ci,.,. ±

then

W4[C] A~
2K

1/2(crA~) (8.23)

is a solution. For planarcurvesA±is just the areaenclosedby C. Asymptotically in A, W hasthe
correctbehaviorfor a confining theory.Appealingto resultsfrom the theory of relativistic strings[8.2],
and some mild technical assumptions,the confining behavior of the solutions of (8.21) can be
demonstrated[8.11].Correctionsto the leadingbehaviorof W[C] havealsobeenobtained[8.12].This
last studymakesprogresstowardssomeof the renormalizabilityquestionsinherentin (8.21).

Is thereanyapproximationto (8.20)which might bring it to the form of (8.21)?A temptingoneis to
replacethe term {F~,.,F,3,.}+ by its vacuumexpectationvalue [8.13].Comparingwith (8.21) we would
obtain

if2 = —f~Tr(13~~.F,.~). (8.24)



266 M. Bander. Theoriesof quark confinement

Thisresult is inconsistent.The left handside of (8.24) is positive. In a Euclidianformulation the right
handsideis intrinsically negative.In aMinkowski formulationF,.~F’~”’= B2 — E2 from the discussionin
section7 we expectthat in a confining phasethe vacuumis primarily magneticandagaintheright hand
sideof (8.24)is negative.

Section 7 providesa clue to a morereasonableapproximation.The Wilson loop operatorcreatesa
unit of electric flux along the curve C. The right handside of (8.20) is approximatedin the following
way:

—g2I~(F,,,.F,I,.U+ 2Fa,.UF~,.+ UFa,.F
13,.) — ~- Tr((F~~~~ F~,.~~w[C]. (8.25)

The notation(( )) denotesan expectationvaluein astatecontaininga unit flux along C. In order to
obtain a finite electric field, the flux mustbe spreadout over a tubeof finite thickness.Takethe cross
sectionalareaof sucha tubeto beA, then with the helpof (7.10) we find that inside the tube

(AE°~dx/ds)
2= (AE~8~dx/ds)2= ~g2(dx/ds)2. (8.26)

The abovemaybeobtainedby placinga hypotheticalquark—antiquarksingletat the endsof a straight
sectionof flux tube. Combining(8.25) with (8.26)yields

ci = g2I6A. (8.27)

Using a relatedbut somewhatdifferent procedure,Nambu [8.3] obtainedthe sameequation.It is
interestingthat (8.27) can be obtainedfrom a differentpicture.In order for aquark-.antiquarkpotential
to bea linearconfining one,the electric flux betweenthemmust beconfinedto a tubeof fixed areaas
the interquarkdistance,R, increases.Theelectricalenergystoredin sucha configuration is

~EaEaAR= (g2I6A)R, (8.28)

yielding a ci identicalwith that of (8.27). In view of the cavaliernatureof the argumentsleading to
(8.25) this agreementis fortuitous.

Let us returnfor a moment to eq. (8.24).Although the sign is wrong, it is interestingto notethata
calculationof this quantity using the instantonapproximationto the pathintegralyields an acceptable
valuefor the absolutevalueof ci [8.13,8.14]. In section 6.1 we saw that instantonswere expelledby
electric fluxes. A reinterpretationof (8.24)is

ci = —f~{((Tr F2)) — (Tr F2)], (8.29)

where ((F2)) is the value of the F2 due to instantons,inside the flux tube, namelyzero.This gives the
correctsign of ci.

Before closingthis sectionit is worthwhile to point out somedangersin this whole approach.First,
all theseequationsinvolve very singular operatorproductsand a meaninghasto be given to them.
Someprogressin thisdirection hasbeenmade[8.5,8.9, 8.12].Second,theapproximateform, (8.21),has
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seriousdifficulties. Is therea theory that yields (8.21) as an exactloop equation?Formally, one can
write down sucha theory [8.15]but dueto the largenumberof configurations,noneof the expectation
valuesexist, i.e., W[C] is infinite. This is true eventhough the theory is constructedon a finite lattice.
These infinities havenothingto do with difficulties in the ultraviolet or infrared, but ratherwith the
numberof configurationsin loop spacegrowing too rapidly.

9. Deconfinementat high temperatures

ShouldQCD truly confine quarks,thereare good theoreticalargumentsthat at finite temperatures
quarkswill be liberated.The critical temperature.T~,abovewhich this phenomenonoccursis of the
order of hadronic energies,or of the order of 1012°K. The interest in high temperatureQCD is
practical,pedagogicalandphilosophical.

On the practicalside, the existenceof a phaseof free quarksmay have a significant impact on
astrophysicsandthe physicsof densenuclearmatter.(A propertreatmentof the lattershouldincludea
finite quarkchemicalpotential.)In standardBig Bangcosmologiesthetemperatureduring thefirst 10~6
secondsexceedsT~[9.1]. In the interiorsof neutronstarsor for very short timesin heavyion collisions,
high effectivetemperaturesmayexist.

From a pedagogicalpoint of view the nature of this transitionemphasizesthe importanceof the
centerof the group in the discussionof confinement.At zero temperaturethe importanceof the group
centerwas discussedin section7.

The third reasonis, perhaps,somewhatsubjective. It is interestingthat the variableswe useto
describethe problemmay, undercertaincircumstances,havedirect physicalmanifestation.An analogy
can be drawn with superconductivity.If the critical temperaturefor this phenomenonhadbeenmuch
higher, so that thesuperconductingstatehadbeenmorecommonthan thenormalone, the ideathat the
electriccurrent is carriedby a Cooperpair of hypotheticalelectronsmight havebeensuspect.

Thedemonstrationthat gaugetheoriesceaseto confineabovea certaintemperatureis carriedout on
the strongcoupling latticeversionof this theory [9.2,9.3]. It is just in this region that we areconfident
that the theoryconfinesat zerotemperature.Correctionsdue to magnetictermstendto deconfinethe
theory without any help from finite temperatureeffects. Therefore,if we find a temperatureabove
which the theory ceasesto confinein the very strongcoupling limit, we areconfidentit will do so, even
at a lower temperaturein the full theory.We will first discussthe thermodynamicsof lattice gauge
theories and then show the deconfinementin the strong coupling limit. Instantoneffects at finite
temperaturehavealsobeenstudied[9.4].

9.1. Thermodynamicsof latticegaugetheories

The prime differencesbetweena field theory at finite temperatureandone at zero temperatureis
that ratherthanthe expectationvaluesof productsof operatorsin the vacuumstatewe are interestedin
a weightedsum of expectationvaluesin all theeigenstatesof the theory.We definea partition function

Z=Tre~’ (9.1)

with H the full Hamiltonianof the theory.$ is the inversetemperature,and the thermalaverageof an
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operator0 is

(0) = Z1 Tr 0 e~”~’. (9.2)

We will first discussgaugetheorieson a latticewith no externalsources.The Hamiltonianis given in
(3.15).The dynamicalvariablesare the link variablesUx;e of (3.6).To an eigenstaten of H corresponds
an eigenfunctioncl’,,[Ux;e]. The physicaleigenstatesareinvariant undergaugetransformations:

~frphysica1[Uxê] = S[gx]~fphysicaI[Ux;e] = c1’physical[gx Ux;egx÷ea]. (9.3)

S[g~] is a gauge transformationdependingon a position dependentset of group elementsg~.The
partition function is

Z = ~ f fl dUx;e(c/t~[Ux,~}exp(—f3E,,)hfmn[Ux;e}). (9.4)
n-p ysical ~

The restrictionof the summationto gaugeinvariant statesis inconvenientandwe may eliminateit by
introducingaprojectionoperator:

Z = ~ J1~~1dUx;j dgx(9!1,,~[Ux;j] exp(—f3E,,)S[g
5] cbn[Ux;e])

~Jfl dUx;~ dgx(ifr,,~[Ux;e]exp(—f3E,,)i/i,,[g~Ux;egx+ea]). (9.5)

The thermodynamicinterpretationof the partition function is

Z = exp{—$F(/3)}, (9.6)

with F(j3) the free energyat a temperaturecorrespondingto j3. It plays the samerole as the vacuum
energyat zero temperature.

The presenceof fixed externalsourcesmodifies the above.Considera sourcetransformingas the q
representationlocatedat point R and anothertransformingas the ~ representationlocatedat the
origin. (For quarks,q is the 3 dimensionalrepresentation.)Undera gaugetransformation

-~ U(go) U~’(gR) i/.~a’~’[gxUx;egx÷ea], (9.7)

and

Z(R) = fl dUx;e dg~
n

X {‘fr~a~[Ux;e] exp(—$E,,)fU~9~(go)U~.(gR)4!F,, ;c,’~s’[gxUx;egx÷ea]}. (9.8)

Thefree energyof a configurationwith asourceat the origin andat R relativeto that of the vacuumis

exp{—f3[F(fl; R) — F(/3)]} = Z~Z(R). (9.9)
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The effectivepotentialenergyof the two sourcesat a temperatureJ3~is

E(8,R)= — ln{Z(R)/Z}. (9.10)

We will showthat at acertaintemperatureE(J3,R) ceasesto havea linear growth in R.

9.2. Strongcouplingapproximationatfinite temperatures

The strongcoupling limit providesthe simplification of explicitly knowing the wave functions and
energies.The Hamiltonian separatesinto a sum of uncoupledlink Hamiltoniansas in (3.18)with x = 0.
The wave functionsareindicatedin (3.17). In this approximation(9.5) is

z = f fl dUx;~dg~~ D~’~[Ux;e]exp{—l~C2)(r)}D~[g~ Ux;egx+ea]. (9.11)
x;I r,p,q r

The orthogonality relations of group representations[3.3] permit a free integration over the link
variablesresultingin

Z = fii dg~exp{_ ~_ C2(r)} ~*~)(g~)~(r)(g~~~,,). (9.12)

~ is the characterof the representationr, i.e. ~ = trD~.We havereducedthe partitionfunction
for a gaugesystem to that of a nearestneighbor coupling spin system.At each site we havea spin
matrix g(x)E SU(3) with a complicatedinteraction given in (9.12). Z is invariant under the discrete
transformation

g_+e±
2lTu/3g, (9.13)

namely,it is invariant underthe centerZ
3. In this approximation(9.8) becomes

Z(R)= f fJ dg~ ~ C(2)(r)] ,y*(T)(gx) ~ ~*(a)(g~)~ (9.14)

or

E(,/3,R) = ~ (9.15)

If the Z3 symmetryis not broken,then for q = 3, 3, 6 or 6

(9.16)

andas R -~ ~ usualstatisticalmechanicsargumentstell usthat the correlationfunction behavesas

R:~ e~~”
t-~, (9.17)
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andwe mayinterpret c.r(J3) as the temperaturedependentinterquarkforce. If the symmetry is broken,
then

(9.18)

and

11(1~C(R)e~’~). (9.19)

C(R) is slowly varying. Theenergyof thistwo quark configurationis

E03,R)=_~lnJMI+ce_~R. (9.20)

—lnIMf/f3 hasthe interpretationof a quark self energyand the secondterm provides a short range
Yukawapotentialbetweenthe liberatedquarks.

We shall now arguethat at sufficiently high temperaturesthe symmetry is broken.At first sight it
is surprising that a symmetry should be broken at high temperatures.It is at low temperaturesthat
orderedstatesoccur. However,thetemperatureof the effective spinsystemof (3.12) is the reciprocalof
the temperatureof the gauge field theory. For /3 small (large temperature)the most important
contributionto the partition function (9.12), comesfrom x(g~)’scloseto eachother.In fact for /3 = 0,
due to the completenessof the group characterson functions constanton the various characteristic
classesof the group, Z is a “S-function” of the group characters;for very large /3 only the trivial
representationcontributes,andthe g~‘s arerelativelyunconstrained.Effectively

Z = Jfl dg~exp{_—~ V[,y(g~),x(gx+ea)]}. (9.21)

The potentialhasa minimumwhenthe two variablesareequal.We seethat therole of the temperature
is the inverseof thatof the gaugesystem.At low spin temperatures(small ~3)this systemundergoesa
phasetransitionto an orderedstateandthe situationenvisionedin (9.18)occurs.

At what temperaturesdoesthis phasetransitiontakeplace?From(9.12) or (9.21) theonly parameter
is g2f3/a so we expectT~-‘~ g2/a. As the only dimensionalphysicalparameteris the string constant,the
full theory temperaturewill be

T~= CVo (9.22)

with C of orderunity (amorerefinedanalysisfinds C to be~[9.4])yielding the temperaturementioned
at the beginningof this section.A MonteCarlo calculationconfirms this idea [9.5].

What is the origin of this transition?In the strongcouplinglimit the eigenstatesof the gaugesystem
areclosedflux contours.Neglectinginteractions,a contourof L links contributesan energy

EL=f~L. (9.23)
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The partition function becomesroughly

Z= ~N(L)exp(_~-~L). (9.24)

N(L) is the numberof contoursof lengthL. This numberis easilyevaluated[9.6]

N(L) = exp[cL]. (9.25)

For T > 2g2/(3ca), the systemcontainsa condensateof flux contoursof largelengths(in fact, in order to
stabilize this systemwe must includeinteractionsamongintersectingstrings).A quark—antiquarkcan
attachthemselvesto a largecontourand separateover a largedistance.

10. “Unsolved” andspeculativeproblems

Should all the previous hopesand approximationspersist to higher orders in strong coupling
expansions,better Monte Carlo calculationsor evenanalytic arguments,andthe assumptionthat in
QCD with no dynamicquarks,non-singletsare confined,therearestill someopenproblems.Oneis of
immediateimportance,namely, the inclusionof light quark fields, in addition to possiblystaticsources.
The secondquestionwe will touch upon is more speculative,namely, how much of the foregoing
discussioncouldsurvivethe discoveryof free quarks.We shall addressthesequestionsin turn.

10.1. Inclusionofdynamicalquarks

Intuitively, the introductionof quark fields with a small, or even zero, massterm, implying pair
annihilation and creation, does not change our criterion for confinement. Nonconfinementor
confinementis equivalentto the existenceor nonexistenceof isolated color singlets. None of the
previousteststo whichwe subjectedthe theory survive thepresenceof dynamicquarksandthuscannot
be usedto determinewhetherthe theory confines.The simple reasonis that if we try to pull a quark
andanantiquarkapartto seewhetherthe separationpotentialincreaseswith distance,atsomepoint it
paysfor the systemto createanotherquark—antiquarkpair out of the vacuum,with the original quark
attachedto the new antiquarkand vice versa.The two partsof the systemgo off as mesons(boundq—4
systems),with no further increase in energy. We shall systematicallyinvestigatehow the various
approachesfail to establishconfinementin the presenceof quark fields.

The obviousmodification dynamicquarksmakeis the addition of

= ic~y~D,.q— m7q (10.1)

to the QCD Lagrangian.Onelattice transcriptionof (10.1) is

L
0 = ~ ~(x + ae)yeU.,~÷aeq(x)— m4(x)q(x). (10.2)

Actually, this lattice version,for fermions,doesnot havetheclassicallimit implied by (10.1) but reduces
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to a classical theory with more degreesof freedom [3.1]. Other lattice Lagrangians have been
introduced [10.1];for the purposes of the present discussion (10.2) is sufficient.

ThelatticeHainiltonian approachfails for the reasonmentionedearlier.Thelowestenergystateof a
static quark pair separatedby a largedistanceis not the onewith a flux line connectingthe sources,but
with an extradynamicquark—antiquarkpair superimposedon the static ones.To low ordersin the
strong coupling expansion,the energy is independentof separation.The expectationvalue of the
Wilson loop operatoris alwaysproportionalto the exponentialof the circumference.Again, the lowest
order in the strongcouplingexpansiondoesnot comefrom filling up the areaenclosedby the loopwith
fundamentalplaquettesas in fig. 3.3(a),but ratherbringing down termsof the form (4(x+ êa) Uq(x))
from the action. These terms are neededonly along the curve c itself and thus the lowest order
contributionto WEd is

ln W[c]—P[c]/a, (10.3)

with P[cl the circumferenceof c.
Similar argumentscan be given for the instantoncontributionto the quark potential. In (6.16) a

quark—antiquark pair shield the external field F~and the effective coupling does not grow with
separation.

We do not expectany infraredsingularitiesin the quarkpropagator;if thispropagatorcanbe defined
at all it will probably haveno poles or cuts, as by unitarity thesewould correspondto physical color
triplet states.The inclusion of quark loopsinto the Dyson—Schwingerequationwould eliminatea 1/k4
singularity the pure QCD theory might produce.

Theduality argumentscannotbe put forwardas the quarkfields transformingas color tripletsarenot
invariant undergaugetransformationscharacterizinga magneticvortex.An electric flux canbe undone
by aquark pair. The presenceof quarksinvalidatesthe approximateioop equationas in (8.11) and
(8.15) as therewill be extratermsgeneratedby D,.F,.~.

We see that all previousapproachesfail to distinguishconfinementfrom nonconfinement.In the
presenceof dynamicalquarkstheremaybeno fundamentaldifferencebetweena confining phaseanda
nonconfining Higgs region [7.4, 10.2]. The only approach left is the one based on the original
observationthat only integrally chargedobjects,or more generally, only SU(3)-flavor triality zero
objectsexist. The quark Lagrangianmust haveat least a global Z

3 symmetry,independentof the 1,
subgroup of SU(3). Wemay then ask whether any states transforming nontrivially under this Z3 have
finite energy.A negativeanswerwould imply confinement.To date no work in thisdirection hasbeen
done.

10.2. Whatif free quarksarefound?

Howmuch of the previous presentations can survive the discovery of free quarks?
7 Weknow that if

such objects exist they are heavy and/or not produced very readily. Some experimental limits are
discussedin section 1. In fig. 10.1 weshowtwo possibleinterquarkenergiesthat ultimately lead to free
quarks,but areconsistentwith a linear energyof separationat short distances.Case(a) in fig. 10.1 leads

Partof themotivation for this sectionhasbeen theauthor’s fear that upon completion of this review positive evidencefor free quarkswill he
presented.
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(a)

E(R)

R

Fig. 10.1. The quark separationenergiesfor two nonconfiningscenariosconsistentwith a linear rising potentialat shortdistances.

to deconfined but heavy quarks. A large amount of energy must be supplied to pull the quark—antiquark
pair in a mesonto a certain radiusof separation.After that, no more energyis neededto pull them
further apart. The total energy supplied (minus the mass of the initial meson) is the rest mass of the free
quark pair. In case(b) this energyis recoveredandthe quark massis small. Quarkscan escapefrom
hadrons only by tunneling or by acquiring a large amount of energy to drive the system over the
potential barrier.

Whatmodifications,andwhat could be the possiblecausesof suchmodifications,haveto be madeto
the previousdiscussionsto obtainenergiesof separationsasin fig. 10.1?For thisspeculationwe will use
the formulation based on eqs. (6.25) to (6.28). The energy of separation (interquark potential plus self
energies)is

E(r) = j~7f dk(1— ek r) ~i~(k2)

— 1 1,1, /1 sin kr\, 2A j~2

22J UI~ k’ kr ,p~~ooi~it . 1 .4
0

To recapitulatesection 6.2, a 1/k4 singularity in zlo
0(k

2) yields a linear, confining potential.We shall
considertwo modificationsof ~ioo(k2)neark2 = 0. First, take

A~(k2)’—’1/(k2+
1s~)(k

2+~) (10.5)

then

E(r) 1 + [e~ — e”~’] 2 2~ (10.6)
/J,i+/22 r

For r <mm (1/~aj,1/~2)the potentialis linear. Adjusting the constantof proportionalityof thisterm to
be the string tensionci the mass of the quark is

M
0 = o1(ui + /52). (10.7)

In the /5~.~—*0limit we recover infinite mass quarks. The masses /51,2 could arisefrom a Higgs type
symmetry breakinggiving the gluonsa very smallmass.A detailedanalysisof such a picturebasedon
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the MIT bagmodel hasbeenpresentedpreviously [10.3].Resultssimilar to (10.7) were obtained.For
distancesr < 1//51,2 muchof theconfinementpictureshold, as for examplethe existenceof a flux string
attachedto a quark.This string is not infinite in length but extendsto r — 1/js leadingto (10.7).

Case (b) (of fig. 10.1) may be obtainedfrom a situationwhere f dkk2 L1
00(k

2)= 0. E(r) would
approachzeroand the quark masswould haveno largeinfraredcomponent.An exampleis

~i~(k2) ~ [k _i/5)2+ (k +i/5)2] (10.8)

yielding

E(r) — — [1 — (1 + r/5)e”]. (10.9)

Again for r < 11/5 we reproducethe previouspictures.Beyond 1/js the energyof separationdecreases
and at large distanceswe find light mass quarks. By choosing /5 sufficiently small both the energy
requiredto knock out quarksfrom a hadronor havethem tunneledthrough a hadronmay be made
large.

Even if free quarksareconclusivelyobserved,the confinementpicture could be valid for distances
smallerthanthosecharacterizingdeconfinement.

Appendix A. Functional integral formulation of gauge theories

In this appendixwe developthe equivalencebetweenthe lattice Hamiltoniangaugetheory andthe
Euclidianpath integralformulation. Our starting point is the latticeHamiltonian,(3.15). Ignoring the
quark fields wemaywrite thisquantity as

H = HE+ HM

HE=L E~ (A.1)

2a tin

HM=~~(2- Ui,- U~).

As discussedin section3, the eigenstatesof E2 aredenotedby Ir; p. p’) with r referringto a particular

representationof the group

E21r; p, p’) = C2~(r)r; p, p’), (A.2)

andthereared2(r) (d(r) is the dimensionalityof the representation)statesfor each r. The eigenstates
of HM are labeled by a group element, I U(b)), and the overlap between these states is given by (3.17). If
no ambiguity arises, we shall, for notational simplicity, write

U(b)) = fl IU(b~,
1))

(A.3)

r) — Ii Ir~,e;~ pb).
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For the moment,let us ignore Gauss’ law. The objectof interestfor which we will developa path
integral is

(U(b’)Ie~’I U(b)). (A.4)

In order to evaluatethis we rewrite [2.2]

(A.5)

with � — TIN andsmall. By neglectingtermsof order �2 we ignore the noncommutativityof HE andHM
andwrite

e~”= e~’~~ (A.6)

As the statesI U(b)) form a completeset,we can rewrite (A.4) using(A.5),

(A.4) = f dU~ dUN I (U(b~+i)Ie~’IU(b~)) (A.7)

with b0 = b andbN+1 = b’. We can use(A.6) to helpusevaluateeachof thetermsin (A.7)

(U(b1±i)Ie~”I U(b~))= ~ (U(b1+ i)Je EHir)(rIeEHMI U(b1))
r,p.p’

= ~ {exp[-~’~~ ~ (2— U(b~,~)—U~(b~.i))JIi TrD
t’~(U~(b

1±i)U~(b1))J.
a tinks g a tinks

(A.8)
Define

ë[U] = ~ exp{’_~—C2)(r)1TrD~[U]. (A.9)

We obtain

(A.4)=fdUi... dUN UT{[T é(U~(b1+i)U(bi))Jexp[_~j~~(2_U(b~,1)—
,—O links P

(A.10)

In the � —~0 limit (A.10) is equivalentto (A.4). At this stagewe havebotha discretespaceanda discrete
time. (A.10) however,is not symmetricbetweenthesetwo directions.To obtainasymmetricexpression
we must find an approximation for é. This approximationwill be valid in the continuumtime limit,
� —*0. As for many of the calculationswe discusswe will want to keep� finite; the approximationwill
agreewith (A.10) only in thesmallg limit. We believethat thecontinuumquantummechanicsbasedon
(A.10), or the approximationwe shall derive, is the same.
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Let ~ be the representationof dimensiond(r) of the generatorsof the Lie algebraof SU(3).Then,
if U=exp(iL.b)

e[U1 = ~Trexp{_~~~(L(r))2+ib L~}. (A.11)

We areinterestedin the limit e or g small as well as U closeto unity; we do not expectnearbylattice
variables to differ significantly from each other. In this situation the L’s may be treatedas classical
variables with the trace and summationover representationsreplaced,up to an irrelevant nor-
malization, by an integrationoverL. Thus

ë[U] =~exp{_~~_~b2}. (A.12)

We wish to extendthis approximationto U away from unity, or b away from zero. We also wish to
maintainthe propertythat e[ U] doesnot changeif b is transformedinto itself alongany closedorbit of
the group.This is accomplishedby setting

b2 2Tr(2 — D~3~(b)— Dt3~(b)). (A.13)

Combiningtheseresultswe find the final approximationtoS

ë[U] exp{_4,~ Tr(2 — U — U÷)}. (A.14)

The groupvariableappearingin the functionsë in (A.10) is the productof two link variablesseparated
by oneunit in the time direction.The gaugeA

0= 0 corresponds,in the lattice language,to settingthe
link variablesfor links parallelto the time direction equalto unity. Keepingthisrestrictionin mind, one
may write U~(b~+1)U(b1) as U~for a plaquettein a time-spaceplane.Choosingthe time step � to be
the sameas the latticespacingresultsin a symmetricapproximationto (A.4):

(A.4) JB dUx;e 8(U~1— 1)exp{-~Tr~ (U,. + U)}. (A.15)

In the abovewedroppedan overall factor of exp{(1/g
2)Tr 2} for eachplaquette(cf. (A.10) and(A.13)).

A boundarycondition fixing the link variablesat t = 0 and t = T, as given initially in (A.4), is implied.
We now return to the task of enforcing Gauss’ law. Rememberthat this is the same as the

requirementthat all of our configurationsare invariant under gauge transformations.This may be
accomplishedby performing all possible gauge transformationsat each separatetime slice. This
amountsto transformingeach link variable Ux;ê (ê-spacial)to g1(x) Ux;e g(x+ e). The g’s are group
elementsand we integrateeachover the whole group. The above transformationhasno effect on
spacialplaquettes.Its effect on plaquettesparallelto the time direction is to changethe timelike links

‘The relationbetween(A.14) and (A.9) is theanalogue,for non-Abeliantheories,of theVillain approximation[Al] in Abelian spin or gauge

theories.
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from unity to g’(x) g(x + 1). This combinationcan be interpretedas a link variable U~,1for timelike
links. Changingvariablesfrom the g’s to the U~,1’samountsto rewriting (A.15) without the 8-function
restrictionon the timelike variables.

9
The vacuumto vacuumtransitionamplitudeis recoveredby taking the largeT limit; in this casethe

initial and final boundaryconditions (discussedbelow (A.15)) may be dropped[2.2].We recoverthe
expressionfor Z of eq. (3.26). Theexpressionfor theexpectationvalueof aproductof operatorscan be
obtainedby repeatingmuchof the discussionof thisappendix.We would thus recoverthe otherpart of
(3.26).

For otherdiscussionwe need the continuumversion of (A.15). Equations(3.5) and (3.8) form the
bridge betweenthe latticeandcontinuumvariables:

(A~(x)Ie~IA~(x))= J [dA~(x)] 8[A~] exp-~(Jd4xF~F~~}. (A.16)

As the gaugetransformationsin continuumgaugetheoriesareno longer restrictedto a compactgroup
[2.2,A.2], we cannottrivially eliminatethe S function.To do so would introducean infinite scalefactor.
We do not expect answersto dependon singling out the time direction; this is especiallytrue for
Euclidiantheories.Choosingan arbitrarydirection n, (A.16) takeson the form

(0Ie’~’I0)= J [dA~] 8(n A) exp{_J ~F’2d4X}. (A.17)

Standardterminologyrefersto the situationwheren is timelike, as the timelike gauge,andwhen n is
space-like,as the axial gauge.

In appendixD we will obtainthe propagatorsandsomeof the verticesbasedon (A.17).

Appendix B. Perturbative j~-function

It was statedseveral times that the quantizationof a field theory necessitatesthe introduction of
some sort of length scale. In principle this could be the lattice parametera, or equivalently a
momentumcut-off —1/a. Physical quantitieswill dependon this parameter,andone can tradethis
cut-off in favor of such quantities. This is the essenceof the renormalizationschemes.For large
couplingson the lattice it was possibleto definea tensionci; keepingthis quantity fixed providedusa
dependenceof the couplingconstanton the latticeparametera. For small couplings this tension does
not exist at least perturbativelyandwe needsomeotherquantity.The usualprocedureis to define a
renormalizedcouplingconstantas thevalueof somevacuumexpectationat specifiedexternalmomenta.
We shall follow a different approach,more in tune with the spirit of this article. We will calculatethe
energyof a staticquark—antiquarksinglet pair at aseparationR [B.1]. This turnsout to havethe form

E(R)= _4~.g2[g(a);RIa]. (B.!)

‘It should not be surprising that enforcing Gauss’ law introducestimelike link variables.In thecontinuumlimit this correspondsto letting Ao
vary. The equationof motion obtainedby varying A

0 in theLagrangianisjust Gauss’law. ChoosingtheAo = 0 gaugeforcedus to imposethislaw as
a supplementaryconstraint.
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g(a) is the couplingconstantappropriateto a cut-off —“1/a. In this situation,we fix the energyat some
given distanceR = 1/A arid find how g hasto dependon a to insurethat E(1IA) is independentof a.
This implies

~ ‘~

da ~9a (B.2)

= —a 8g/~9a.

Therefore

= (t9gI~g)’ag/9a. (B.3)

/(g) is the renormalizationgroup function analogousto that of (4.2). We havetemporarily placed a
tilde over it to emphasizethat as it is defineddifferently from the strongcoupling lattice /3, it doesnot
haveto be equalto it. We will show that in a power seriesexpansionin g the first two terms are
universal[4.2].From nowon we will drop the tilde over the /3 function.

The powerseriesfor ~ turnsout to havethe form

= g
2+ 2/3og4ln(y

1R/a)+ 2g
6(j3

1 ln(y2R/a)+ 2/3~(lny1R/a)
2)+ 0(g8). (B.4)

Using (B.3) we find

f3(g)= —f3og3—j3
1g

5+0(g7). (B.5)

The constants y depend on the details of the particular renormalization scheme. Wewill first show that
f3~and/3~are universalandthen evaluate$o. The evaluation of f3~is very lengthy and only the result
will be presented.

To show that the first two termsdo not dependon the definition of the coupling constant,we
evaluate

= —a dg7da (B.6)

for a couplingconstant,~. ~ can be expandedas a powerseriesin g

~=g+cg3+O(g5) (B.7)

g=~—c~3+0(,~).

Thus

I~&)=(1+3cg2)/3(g)

= —$og3—$
1g

5—3c$
0g

5+ .. (B.8)

andthe first two termsagreewith (B.5).



M. Bander,Theoriesofquark confinement 279

In order to find f3~ and f3~we return to (B.1) andevaluateE(R) through ordinary perturbation
theory [B.1]. We usethe Hamiltonian formalism developedin section 2. Rewriting (2.5) and (2.6) we
find

H=~Jd3x{Ea.Ea+JJa .~}, (B.9)

andthe statesareannihilatedby the operator

V E~+ gf’~”A~ET+ gpa~ (B.10)

pa is the chargedensity due to the quarksp = p1 + P2, and we will seek the term in the energy

proportional to P1P2.This is the termwe caninterpretas the interquarkpotential.In the first two orders
of perturbation theory such a term comes from the longitudinal part of the electric field. Namely, with
the help of (B.10), we separate the electric field into a transverse part and a longitudinal part:

Ea =E;—V~

V~E~=0. (B.11)

Using (B.10) we solvefor coa (to orderg2)

= g[5aY + gf’~’V”2A~ V] V~2[f~A8E~+p)’]. (B.12)

ET and AT are the dynamical variables. To order g4, the interesting part of the Hamiltonianis

Hfd3x[E~.E~+(VxAa). (~xA).aV2(pa] (B.13)

The first ordercontributionto the energyis

E
1(p)= —i-f d

3x {pV2p+ 3g2f~f~(O~paV2AB. VV-2Aa . VV2p~j0)}

= I 4ir~-yIPa(X) pa(y){i + ~- In Y)2
1~ (B.14)

Yt is a finite constant. To the same g
4 order we have to evaluatea secondorder perturbation

contributionto the energy.The intermediatestateconsistsof two gaugeparticleswith momentak
1 and

polarizationsA1, i = 1, 2,

~‘f d
3xf YpaV_2AI3. E~j~Ik, A)~2E

2=_g4~fd3kid3k2 IkI+IkI . (B.15)

In reality, to thisorder,higher powersof p appear.As discussedpreviously,it is the quadraticterm that
can begiven a potential interpretation.Evaluating(B.15) we obtain

E2&4 = —214~~fl~
2 ln[y~(x— y)2/a2]pa(x)pa(y)~ (B.16)
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72 is anotherfinite constant.CombiningE1 and E2, wecan readof the interquarkpotential

E(R)= __~.{g2+~.Lln[y~R2/a21}. (B.17)

The subscript c in Ye is there to emphasizethat this calculation was carried out in a continuous
formalism.Comparingwith (B.4) we find [1.11]

f3~= 11/(16rr
2). (B.!8)

A calculationof f3~is muchmoreinvolved [B.2]. Theresult is

= 102/(16ir2)2. (B.19)

The last topic we wish to discussis the dependenceof the couplingconstanton the finite part of the
g4 term. From (B.4)or (B.17) we can definea renormalizedcouplingconstantat R = 1/A, fixed

g2(A)= g2 + /3
0g

4 lnfty/Aa)2]. (B.20)

The finite constantdependson the calculationalscheme.Above we emphasizedthis point by placinga
subscriptc on ~. Had we performeda lattice calculationwe would haveobtaineda YL ~ Ye- The two
calculationscan be broughtinto agreementby choosingdifferentA ‘s such that

AC/AL= Yc/YL. (B.21)

Detailed calculationscomparingthesevarious renormalizationschemeshavebeen carriedout for
continuum renormalization prescriptions [B.3], and for the comparison between continuum and lattice
cut-offs [B.4, B.5]. Comparisonof the Eucidian four dimensionallattice cut-off to the momentum
subtractioncontinuumschemeyields

Amom = 83.5AEL [B.4] (B 22)

Amom = 87.3AEL [B.5].

The origin of the 5% discrepancyin thesenumbersis unknown.The ratio of the Euclidian latticeAEL.

to the threedimensionalspaciallatticeA S.L. is [B.6] [cf.Note addedin proof]:

As.L = 3.O12AE.L.. (B.23)

A renormalizationschemeused widely in phenomenologicalapplications is the modified minimal
subtractionscheme(MS) [4.3].The relation of AKrS to otheronesis [B.3]

Ag~~0.37Amom. (B.24)

Appendix C. Instantons

Examining the QCD Hamiltonian, eq. (2.5), we seethat minimumenergyconfigurationscorrespond
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to vanishingof the magneticterm.This implies that the gaugepotentialA is a pure gauge.Namely

A=-’-U~VU, (C.1)

with U a time independentunitary matrix. These unitary matricesfall into discreteclassesbasedon
their behaviorat spatial infinity. Two unitary matriceswhich differ from eachotherin afinite region of
spacearesaid to belongto the sameclass.Nontrivial behaviorat large distancescan be obtainedfrom
transformationsof the form

U~(r)= exp[—2ir ivraR~Aa/2Vr2+ p2]. (C.2)

Raa is a grouprotation with a = 1, 2, 3 anda = 1 . . . 8, i-’ is an integer,andp an arbitrary length.A

puregaugepotential

= -~ UVU,. (C.3)

can be characterizedby a topologicalquantumnumberequalto ii

= 1~ Trf d3xA~(A~x A~). (C.4)

Any puregaugepotentialgeneratedby a unitary matrix which differs from U~in afinite region of space
will have the same topological quantum number as

The nextquestionwe askis whetherthereis a solutionof the classicalequationsof motion,which for
Euclidian t—* —~ belongsto classv = 0, and at t—* +~changesto v = ±1.In betweenthis solutionwill
not be a puregauge.We first give the form of this solution in the Lorentzgaugeandthentransformto
the A

0 = 0 gauge.This potentialconfigurationis the BPTS [6.1]instantonandanti-instanton

A~(r) = Raa?la~vrv/(r
2+p2). (C.5)

r is now a Eucidianfour vector,and

fl aaj = �aq

llaOi’ ‘~7aiO ±Sai (C.6)

with the ± referring to instantons or anti-instantons.
This potential can be transformed to the A

0 = 0 gauge by

S(r, ro) = exp{_2i f (~— yd)~o~ar2+ ~2R~ ~}. (C.7)

For ro—* —~, S—* 1 and as r0—* +~, S approachesU(l)(r) of (C.2). As promised, the instanton



282 M. Bander,Theoriesofquark confinement

interpolatesbetween i.’ = 0 and v = 1. Similarly we can showthat the anti-instantongoesfrom ti = 0 to
p = —1.

The classical Eudidian action for (C.5) is

So(g) ~f F~d4x = 8~r2Ig2. (C.8)

Appendix D. Propertiesof propagators and verticesin the axial gauge

As usual,thepropagatorof a theory is obtainedfrom the quadraticpart of the exponentappearingin
(A.17)

L
0 = ~ — 3~A~)(3~A~— &,A~). (D.1)

Because8(n . A) appearsin (A. 17)not all potentialsareintegratedover. The propagatoris the inverse
of L0, and due to the above, we restrict the inverse to the three dimensional space orthogonal to n. The
Euclidian propagator is [D.1, 6.9]

= -~ [s~~— n,~qP+fli4LL + (D.2)

The correspondingfree Minkowski spacepropagatoris

(~) — —i [ — n~q~+ ~ + D 3
~q) — q

2+ i� ~ n q (n . q)2 ( . )

Of course,n,LL1,.~= 0 andso the four-dimensionalinverseof ~15Li~ doesnot exist. In the spaceorthogonal
to n, the inverse of ~ ~. is

= + ~(q~n~+ n,~g~)n.— ~ ~ (q2 + ~

(D.4)
= i(q2g,~.— ~

In manyinstancesH,~is contractedwith tensorsorthogonalto n andonly H~will be important.We
will looselyrefer to it as the “inverse” propagator

— /“,ua~avgiis’ n~qS,,nq D5
g,,.,, — n4jn q.

These relations will be generalized to the full propagator and its “inverse”.
We shall alsoneedsomeof the exactrelationsbetweenthe full propagatorsandthe full vertices.The

propagatoris definedas

= f dx e~x(0I(Aa(x) A~(0))I0), (D.6)
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andthe properthreepoint vertexas

q, r)84(,p+ q + r)

= (~7.)8 f d~xd4y d4zei~~xe’9~e~ (0IT(J~(x)A~(y)A~(z))I0). (D.7)

J~is the color current.
The conservationlaw, ~ andthe currentpotentialcommutationrelations

8(xo)[J~(x),A~(0)]= if~1!b’84(x)A~’(x), (D.8)

providethe Ward identity [2.2, D.2]

ip”1~t(p,q, r)= fabc [I ,k(T) — H~A(q)]. (D.9)

Analogousresultsholdfor four point vertices.F is symmetricunderthe interchangeof all the variables.

Acknowledgement

Thiswork would havebeenimpossiblewithout the help of manycolleagues.For discussionsand/or
correspondenceinvolving preliminary resultsI am grateful to: J. AmbjØrn, J. Ball, T.W. Chiu, M.
Creutz, S. Drell, D. Gross, J. Kogut, G. Mack, R. Pearson,J. Richardson,K. Wilson and F.
Zachariasen.

For cheerfully typing, retyping andproofreading,I would like to thank Mrs. J. Brown, Mrs. M.
GolianandMrs. E. Williams.

To Carol, I extendmy thanksfor not losingher good humorduring the pastseveralmonths.

Noteadded in proof

A. Hasenfratzand P. Hasenfratz[Budapest,KFK5-1981-15]havereevaluatedthe relation between
Amom and AEL, eq. (B.22), by the methodsof ref. [B.5] and confirmed the resultof ref. [B.4]. Thus
‘imom = 83.SAE.L..Asthedifferencebetweenthevariousresultswasonly 5% thisdoesnot affect any of the
previousdiscussion.

Hasenfratzand Hasenfratzhavealsoevaluated

As.L.= 0.91EL,

whichisconsiderablydifferentfrom theresultpresentedin eq. (B.23).Thisintroducesseriousdiscrepancies
betweenthe HamiltonianandEuclidianlatticeperturbationtheoriesaswell asMonteCarlocalculations.
The valueof AS.L. presentedin eq. (5.5) yields

A~ = (220±50)MeV

in totaldisagreementwith resultsof Euclidianperturbationtheory,eq. (5.8) andtheMonteCarloresults,
eq. (5.14).
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A possibleresolutionof thesediscrepanciesmaylie in theextrapolationproceduresusedto determineA
(eq. (5.6))from Hamiltonianperturbationtheory.A sixth orderresultyieldedA = 170.If thisis thecorrect
valueratherthanthe extrapolatedonethen agreementwith othermethodswould berestored.
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